Stratifications of Flag Spaces and Functoriality

被引:8
|
作者
Goldring, Wushi [1 ]
Koskivirta, Jean-Stefan [2 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
F-ZIPS;
D O I
10.1093/imrn/rnx229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define stacks of zip flags, which form towers above the stack of G-zips of Moonen, Pink, Wedhorn and Ziegler in [14-16]. A stratification is defined on the stack of zip flags, and principal purity is established under a mild assumption on the underlying prime p. We generalize flag spaces of Ekedahl-Van der Geer [4] and relate them to stacks of zip flags. For large p, it is shown that strata are affine. We prove that morphisms with central kernel between stacks of G-zips have discrete fibers. This allows us to prove principal purity of the zip stratification for maximal zip data. The latter provides a new proof of the existence of Hasse invariants for Ekedahl-Oort strata of good reduction Shimura varieties of Hodge-type, first proved in [8].
引用
收藏
页码:3646 / 3682
页数:37
相关论文
共 50 条