Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation

被引:37
|
作者
Nguyen Manh Hung [1 ,2 ]
Chu Manh Hung [1 ]
Nguyen Van Duy [1 ]
Nguyen Duc Hoa [1 ]
Hoang Si Hong [3 ]
Tran Khoa Dang [4 ]
Nguyen Ngoc Viet [4 ]
Le Viet Thong [4 ]
Phan Hong Phuoc [4 ]
Nguyen Van Hieu [4 ,5 ]
机构
[1] Hanoi Univ Sci & Technol, Int Training Inst Mat Sci, Hanoi, Vietnam
[2] Le Quy Don Tech Univ, Dept Mat Sci & Engn, Hanoi, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Elect Engn, Hanoi, Vietnam
[4] Phenikaa Univ, Fac Elect & Elect Engn, Hanoi, Vietnam
[5] A&A Green Phoenix Grp, Phenikaa Res & Technol Inst, Hanoi, Vietnam
关键词
SnO2; nanowires; Networked nanowires; UV-radiation; Gas sensors; Nanojunctions; SENSORS; OXIDE; ZNO;
D O I
10.1016/j.sna.2021.112759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A unique combination of high response and fast response-recovery is still a challenge in the development of room-temperature gas sensors. Herein, we demonstrated the on-chip growth of nanojunction-networked SnO2 NW sensors to work under UV-radiation at room temperature. The morphological, compositional, and structural properties of synthesized SnO2 nanowires were examined using field emission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy, respectively. The results presented the SnO2 NWs with smooth surfaces were entangled between the Pt electrode. Besides, the internal properties showed the SnO2 NWs were crystallized as the tetragonal rutile structure of SnO2. The use of UV-radiation with the optimum intensity of 50 mu W/cm(2) increased the gas response to 5 ppm NO2 up to 7-fold, while response and recovery times decreased about 8- and 4-fold, respectively. Moreover, alternative use of pulsed UV-radiation(provided only during the air recovery phase) can enhance significant gas response as compared with continuous UV-radiation. The enhancement of gas response could be attributed to the photo-adsorption and -desorption of NO2 molecule due to the photogeneration of electron-hole pairs. The combination of NW-NW nanojunctions and pulsed UV-radiation is expected to be a novel strategy for high-performance room temperature gas sensors. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Synthesis of SnO2 nanowires and their gas sensing characteristics
    Hwang, In-Sung
    Choi, Young-Jin
    Park, Jae-Hwan
    Park, Jae-Gwan
    Kim, Ki-Won
    Lee, Jong-Heun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (03) : 1229 - 1233
  • [42] Reduced Graphene Oxide Mediated SnO2 Nanocrystals for Enhanced Gas-sensing Properties
    Yanhong Chang
    Yunfeng Yao
    Bin Wang
    Hui Luo
    Tianyi Li
    Linjie Zhi
    JournalofMaterialsScience&Technology, 2013, 29 (02) : 157 - 160
  • [43] GAS-SENSING PROPERTIES OF SNO2 PYROLYTIC FILMS SUBJECTED TO ULTRAVIOLET-RADIATION
    SAURA, J
    SENSORS AND ACTUATORS B-CHEMICAL, 1994, 17 (03) : 211 - 214
  • [44] Reduced Graphene Oxide Mediated SnO2 Nanocrystals for Enhanced Gas-sensing Properties
    Chang, Yanhong
    Yao, Yunfeng
    Wang, Bin
    Luo, Hui
    Lie, Tianyi
    Zhi, Linjie
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2013, 29 (02) : 157 - 160
  • [45] Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties
    Kou, Xueying
    Wang, Chong
    Ding, Mengdi
    Feng, Changhao
    Li, Xin
    Ma, Jian
    Zhang, Hong
    Sun, Yanfeng
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 236 : 425 - 432
  • [46] A novel SnO2 nanostructures and their gas-sensing properties for CO
    Xu, Lingna
    Chen, Weigen
    Jin, Lingfeng
    Zeng, Wen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (05) : 4826 - 4832
  • [47] A novel SnO2 nanostructures and their gas-sensing properties for CO
    Lingna Xu
    Weigen Chen
    Lingfeng Jin
    Wen Zeng
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 4826 - 4832
  • [48] Gas-sensing properties of antimony-doped SnO2
    Kuznetsova, S. A.
    Ikonnikova, L. F.
    Kozik, V. V.
    INORGANIC MATERIALS, 2007, 43 (06) : 622 - 626
  • [49] Gas-sensing properties of antimony-doped SnO2
    S. A. Kuznetsova
    L. F. Ikonnikova
    V. V. Kozik
    Inorganic Materials, 2007, 43 : 622 - 626
  • [50] Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol
    Chiu, Hui-Chi
    Yeh, Chen-Sheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (20): : 7256 - 7259