AGGREGATION AND EFFECTIVE THERMAL CONDUCTIVITY OF NANOFLUIDS: DEPENDENCE ON CLUSTER SIZE AND MORPHOLOGY

被引:0
|
作者
Reyes-Mata, Miguel [1 ]
Blawzdziewicz, Jerzy [2 ]
Wajnryb, Eligiusz [3 ]
Zurita-Gotor, Mauricio [1 ]
机构
[1] Abengoa Res SL, Abengoa Campus Palmas Altas, Seville 41014, Spain
[2] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[3] Polish Acad Sci, Inst Fundamental Technol Res, Pawinskiego 5B, PL-02106 Warsaw, Poland
关键词
SUSPENSIONS; MECHANISMS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We combine a multipolar expansion technique and a cluster cluster aggregation algorithm to accurately compute the effect of aggregation on the thermal conductivity of nanofluids. Results show that the normalized enhancement in the effective conductivity of nanofluids exhibits a power law dependence on average cluster size. The exponent in the power law is a decreasing function of the fractal dimension, and is always larger than zero, thus predicting enhancements in excess of Maxwell's theory for well dispersed individual nanoparticles. Results are interpreted in terms of an effective particle size for heat conduction of aggregates which approximately scales as the gyration radius, specially at larger fractal dimensions.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Dependence of Thermal Conductivity on Size and Specific Surface Area for Different Based CoFe2O4 Cluster Nanofluids
    Vallejo, Javier P.
    Elsaidy, Amir
    Lugo, Luis
    APPLIED SCIENCES-BASEL, 2024, 14 (21):
  • [22] Simultaneous measurement of the effective thermal conductivity and effective thermal diffusivity of nanofluids
    Murshed, S. M. Sohel
    Leong, Kai Choong
    Yang, Chun
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 549 - 553
  • [23] Numerical study of the effective thermal conductivity of nanofluids
    Shulkla, Ratnesh K.
    Dhir, Vijay K.
    HT2005: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2005, VOL 1, 2005, : 449 - 457
  • [24] Effective thermal conductivity of nanofluids: the effects of microstructure
    Fan, Jing
    Wang, Liqiu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (16)
  • [25] A reliablemodel to estimate the effective thermal conductivity of nanofluids
    Zendehboudi, Alireza
    Saidur, R.
    HEAT AND MASS TRANSFER, 2019, 55 (02) : 397 - 411
  • [26] Effective Thermal Conductivity of Nanofluids: Measurement and Prediction
    Francisco E. Berger Bioucas
    Michael H. Rausch
    Jochen Schmidt
    Andreas Bück
    Thomas M. Koller
    Andreas P. Fröba
    International Journal of Thermophysics, 2020, 41
  • [27] Effect of Nanoparticle Size, Morphology and Concentration on Specific Heat Capacity and Thermal Conductivity of Nanofluids
    Angayarkanni, S. A.
    Sunny, Vijutha
    Philip, John
    JOURNAL OF NANOFLUIDS, 2015, 4 (03) : 302 - 309
  • [28] A combined model for the effective thermal conductivity of nanofluids
    Murshed, S. M. S.
    Leong, K. C.
    Yang, C.
    APPLIED THERMAL ENGINEERING, 2009, 29 (11-12) : 2477 - 2483
  • [29] Effective Thermal Conductivity of Nanofluids: Measurement and Prediction
    Bioucas, Francisco E. Berger
    Rausch, Michael H.
    Schmidt, Jochen
    Bueck, Andreas
    Koller, Thomas M.
    Froeba, Andreas P.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 41 (05)
  • [30] Influence of aggregation on thermal conductivity in stable and unstable nanofluids
    Shima, P. D.
    Philip, John
    Raj, Baldev
    APPLIED PHYSICS LETTERS, 2010, 97 (15)