Automatic Hyperparameter Tuning in Deep Convolutional Neural Networks Using Asynchronous Reinforcement Learning

被引:35
|
作者
Neary, Patrick L. [1 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
关键词
image recognition; neural networks; machine learning; convolutional neural networks; artificial intelligence; hyperparameter tuning; deep learning;
D O I
10.1109/ICCC.2018.00017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Major gains have been made in recent years in object recognition due to advances in deep neural networks. One struggle with deep learning, however, revolves around the fact that currently it is unknown what network architecture is best for a given problem. Consequently, different configurations are tried until one is identified that gives acceptable results. This paper proposes an asynchronous reinforcement learning algorithm that finds an optimal network configuration by automatically adjusting parameters for a given problem. It is shown that asynchronous reinforcement learning is able to converge on an optimal solution for the MNIST data set.
引用
下载
收藏
页码:73 / 77
页数:5
相关论文
共 50 条
  • [21] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Muhammad Ather Iqbal
    Zhijie Wang
    Zain Anwar Ali
    Shazia Riaz
    Wireless Personal Communications, 2021, 116 : 1043 - 1053
  • [22] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Iqbal, Muhammad Ather
    Wang, Zhijie
    Ali, Zain Anwar
    Riaz, Shazia
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 116 (02) : 1043 - 1053
  • [23] Automatic mass detection in mammograms using deep convolutional neural networks
    Agarwal, Richa
    Diaz, Oliver
    Llado, Xavier
    Yap, Moi Hoon
    Marti, Robert
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [24] Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
    Lopes, Fabio
    Leal, Adriana
    Medeiros, Julio
    Pinto, Mauro F.
    Dourado, Antonio
    Duempelmann, Matthias
    Teixeira, Cesar
    IEEE ACCESS, 2021, 9 : 149955 - 149970
  • [25] Reinforcement Learning using Physics Inspired Graph Convolutional Neural Networks
    Wu, Tong
    Scaglione, Anna
    Arnold, Daniel
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [26] Convolutional Neural Networks, Big Data and Deep Learning in Automatic Image Analysis
    Vrejoiu, Mihnea Horia
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2019, 29 (01): : 91 - 114
  • [27] A Deep Learning Approach for Automatic Ionogram Parameters Recognition With Convolutional Neural Networks
    Sherstyukov, Ruslan
    Moges, Samson
    Kozlovsky, Alexander
    Ulich, Thomas
    EARTH AND SPACE SCIENCE, 2024, 11 (10)
  • [28] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [29] Deep Learning in Liver Biopsies using Convolutional Neural Networks
    Arjmand, Alexandros
    Angelis, Constantinos T.
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Glavas, Evripidis
    Forlano, Roberta
    Manousou, Pinelopi
    Giannakeas, Nikolaos
    2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 496 - 499
  • [30] Effect of Automatic Hyperparameter Tuning for Residential Load Forecasting via Deep Learning
    Kong, Weicong
    Dong, Zhao Yang
    Luo, Fengji
    Meng, Ke
    Zhang, Wang
    Wang, Fan
    Zhao, Xiang
    2017 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2017,