Prefetching for visual data exploration

被引:20
|
作者
Doshi, PR [1 ]
Rundensteiner, EA [1 ]
Ward, MO [1 ]
机构
[1] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
关键词
D O I
10.1109/DASFAA.2003.1192383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern computer applications, from business decision support to scientific data analysis, utilize data visualization tools to support exploratory activities. Visual exploration tools typically do not scale well when applied to huge data sets, partially because being interactive necessitates real-time responses. However we observe that interactive visual explorations exhibit several properties that can be exploited for data access optimization, including locality of exploration, contiguous queries, and significant delays between user operations. We thus apply semantic caching of active query sets on the client side to exploit some of the above characteristics. We also introduce several prefetching strategies, each exploiting characteristics of our visual exploration environment. We have incorporated caching and prefetching strategies into XmdvTool, a public-domain tool for visual exploration of multivariate data sets. Experimental studies using synthetic as well as real user traces are conducted. Our results demonstrate that these proposed optimization techniques achieve significant performance improvements in our exploratory analysis system.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 50 条
  • [21] Guided Visual Exploration of Relations in Data Sets
    Puolamaki, Kai
    Oikarinen, Emilia
    Henelius, Andreas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [22] Visual data exploration using Legendre wavelets
    Ueda, M
    Lodha, SK
    VISUAL DATA EXPLORATION AND ANALYSIS III, 1996, 2656 : 46 - 57
  • [23] VizCertify: A framework for secure visual data exploration
    De Stefani, Lorenzo
    Spiegelberg, Leonhard F.
    Upfal, Eli
    Kraska, Tim
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 241 - 251
  • [24] Big Data Exploration through Visual Analytics
    Abousalh-Neto, Nascif A.
    Kazgan, Sumeyye
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 285 - 286
  • [25] NeuralCubes: Deep Representations for Visual Data Exploration
    Wang, Zhe
    Cashman, Dylan
    Li, Mingwei
    Li, Jixian
    Berger, Matthew
    Levine, Joshua A.
    Chang, Remco
    Scheidegger, Carlos
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 550 - 561
  • [26] Survey of the Visual Exploration and Analysis of Perfusion Data
    Preim, Bernhard
    Oeltze, Steffen
    Mlejnek, Matej
    Groeller, Eduard
    Hennemuth, Anja
    Behrens, Sarah
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (02) : 205 - 220
  • [27] Visual Cluster Exploration of Web Clickstream Data
    Wei, Jishang
    Shen, Zeqian
    Sundaresan, Neel
    Ma, Kwan-Liu
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 3 - 12
  • [28] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [29] Big data visual exploration as a recommendation problem
    Kahil, Moustafa Sadek
    Bouramoul, Abdelkrim
    Derdour, Makhlouf
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2023, 15 (02) : 133 - 153
  • [30] Guided visual exploration of relations in data sets
    Puolamäki, Kai
    Oikarinen, Emilia
    Henelius, Andreas
    Journal of Machine Learning Research, 2021, 22