Embedding properties of Besov-type spaces

被引:25
|
作者
Yuan, Wen [1 ,2 ]
Haroske, Dorothee D. [2 ]
Skrzypczak, Leszek [3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Jena, Inst Math, D-07737 Jena, Germany
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
wavelet characterization; embedding; Besov-type space; Secondary: 42B35; Primary: 46E35; MORREY SPACES; BASES;
D O I
10.1080/00036811.2014.895331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors study embeddings of Besov-type spaces , and obtain necessary and sufficient conditions. Moreover, the authors also consider situations or , and can finally cover some cases where is replaced by .
引用
收藏
页码:318 / 340
页数:23
相关论文
共 50 条
  • [31] Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces
    Dachun Yang
    Wen Yuan
    Ciqiang Zhuo
    Revista Matemática Complutense, 2014, 27 : 93 - 157
  • [32] New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 451 - 480
  • [33] Function spaces of Besov-type and Triebel-Lizorkin-type - a survey
    Yang Da-chun
    Yuan Wen
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 405 - 426
  • [34] A Note on Weighted Besov-Type and Triebel-Lizorkin-Type Spaces
    Tang, Canqin
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [35] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    Drihem, Douadi
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 1073 - 1086
  • [36] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces by Differences
    Drihem, Douadi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [37] Function spaces of Besov-type and Triebel-Lizorkin-type——a survey
    YANG Da-chun
    YUAN Wen
    Applied Mathematics:A Journal of Chinese Universities, 2013, 28 (04) : 405 - 426
  • [38] A Characterization of Besov-type Spaces and Applications to Hankel-type Operators
    Blasi, Daniel
    Pau, Jordi
    MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (02) : 401 - 417
  • [39] New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces
    Dachun Yang
    Wen Yuan
    Mathematische Zeitschrift, 2010, 265 : 451 - 480
  • [40] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    DRIHEM Douadi
    Science China Mathematics, 2013, 56 (05) : 1073 - 1086