A unified framework for improving the accuracy of all holistic face identification algorithms

被引:4
|
作者
Chen, Liang [1 ]
Tokuda, Naoyuki [2 ]
机构
[1] Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
[2] SunFlare Co, R&D Ctr, Shinjuku Ku, Tokyo 1600004, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
Electoral College; Face identification; Face recognition; Holistic algorithms; Stability; HAMMING NETWORK; FEATURES;
D O I
10.1007/s10462-009-9139-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reconstructing the challenging human face identification process as a stability problem, we show that Electoral College can be used as a framework that provides a significantly enhanced face identification process by improving the accuracy of all holistic algorithms. The results are demonstrated by extensive experiments on benchmark face databases applying the Electoral College framework embedded with standard baseline and newly developed face identification algorithms.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [21] Unified framework for sampling/importance resampling algorithms
    Heine, K
    2005 7th International Conference on Information Fusion (FUSION), Vols 1 and 2, 2005, : 1459 - 1464
  • [22] Holistic framework for evaluating and improving information security culture
    Arbanas, Krunoslav
    Spremic, Mario
    Zajdela Hrustek, Nikolina
    ASLIB JOURNAL OF INFORMATION MANAGEMENT, 2021, 73 (05) : 699 - 719
  • [23] Face Identification Accuracy and Response Latency
    Manzanero, Antonio L.
    Farias-Pajak, Kelena
    Igual, Carlos
    Quintana, Jose M.
    ANUARIO DE PSICOLOGIA JURIDICA, 2011, 21 (01): : 107 - 113
  • [24] Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms
    Phillips, P. Jonathon
    Yates, Amy N.
    Hu, Ying
    Hahn, Carina A.
    Noyes, Eilidh
    Jackson, Kelsey
    Cavazos, Jacqueline G.
    Jeckeln, Geraldine
    Ranjan, Rajeev
    Sankaranarayanan, Swami
    Chen, Jun-Cheng
    Castillo, Carlos D.
    Chellappa, Rama
    White, David
    O'Toole, Alice J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (24) : 6171 - 6176
  • [25] KIEGLFN: A unified acne grading framework on face images
    Lin, Yi
    Jiang, Jingchi
    Ma, Zhaoyang
    Chen, Dongxin
    Guan, Yi
    You, Haiyan
    Cheng, Xue
    Liu, Bingmei
    Luo, Gongning
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [26] Unified Framework of Face Hallucination across Multiple Modalities
    Ma, Xiang
    Liu, Junhui
    Li, Wenmin
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [27] A UNIFIED MODEL FOR IMPROVING DEPTH ACCURACY IN KINECT SENSOR
    Peng, Li
    Zhang, Yanduo
    Zhou, Huabing
    Chen, Deng
    Yu, Zhenghong
    Jiang, Junjun
    Ma, Jiayi
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 223 - 228
  • [28] A framework for performance evaluation of face recognition algorithms
    Black, JA
    Gargesha, M
    Kahol, K
    Kuchi, P
    Panchanathan, S
    INTERNET MULTIMEDIA MANAGEMENT SYSTEMS III, 2002, 4862 : 163 - 174
  • [29] A Method for Improving the Accuracy of Link Prediction Algorithms
    Li, Jie
    Peng, Xiyang
    Wang, Jian
    Zhao, Na
    COMPLEXITY, 2021, 2021
  • [30] A unified Bayesian framework for algorithms to recover blocky signals
    Calvetti, Daniela
    Somersalo, Erkki
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XVII, 2007, 6697