A unified framework for improving the accuracy of all holistic face identification algorithms

被引:4
|
作者
Chen, Liang [1 ]
Tokuda, Naoyuki [2 ]
机构
[1] Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
[2] SunFlare Co, R&D Ctr, Shinjuku Ku, Tokyo 1600004, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
Electoral College; Face identification; Face recognition; Holistic algorithms; Stability; HAMMING NETWORK; FEATURES;
D O I
10.1007/s10462-009-9139-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reconstructing the challenging human face identification process as a stability problem, we show that Electoral College can be used as a framework that provides a significantly enhanced face identification process by improving the accuracy of all holistic algorithms. The results are demonstrated by extensive experiments on benchmark face databases applying the Electoral College framework embedded with standard baseline and newly developed face identification algorithms.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [1] A unified framework for improving the accuracy of all holistic face identification algorithmsElectoral College for human face identification by computing machinery
    Liang Chen
    Naoyuki Tokuda
    Artificial Intelligence Review, 2010, 33 : 107 - 122
  • [2] Holistic Processing Is Not Correlated With Face-Identification Accuracy
    Konar, Yaroslav
    Bennett, Patrick J.
    Sekuler, Allison B.
    PSYCHOLOGICAL SCIENCE, 2010, 21 (01) : 38 - 43
  • [3] Effects of aging on face identification and holistic face processing
    Konar, Yaroslav
    Bennett, Patrick J.
    Sekuler, Allison B.
    VISION RESEARCH, 2013, 88 : 38 - 46
  • [4] A Unified Framework for Thermal Face Recognition
    Ghiass, Reza Shoja
    Arandjelovic, Ognjen
    Bendada, Hakim
    Maldague, Xavier
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT II, 2014, 8835 : 335 - 343
  • [5] A unified Bayesian framework for face recognition
    Liu, CJ
    Wechsler, H
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 1, 1998, : 151 - 155
  • [6] Unified framework for face sketch synthesis
    Wang, Nannan
    Zhang, Shengchuan
    Gao, Xinbo
    Li, Jie
    Song, Bin
    Li, Zan
    SIGNAL PROCESSING, 2017, 130 : 1 - 11
  • [7] A unified tensor framework for face recognition
    Rana, Santu
    Liu, Wanquan
    Lazarescu, Mihai
    Venkatesh, Svetha
    PATTERN RECOGNITION, 2009, 42 (11) : 2850 - 2862
  • [8] A unified framework for subspace face recognition
    Wang, XG
    Tang, XO
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) : 1222 - U3
  • [9] DCR: A Unified Framework for Holistic/Partial Person ReID
    Gao, Zan
    Gao, Lishuai
    Zhang, Hua
    Cheng, Zhiyong
    Hong, Richang
    Chen, Shengyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3332 - 3345
  • [10] A unified method for improving long-range accuracy of stereo and monocular depth estimation algorithms
    Miclea, Vlad-Cristian
    Nedevschi, Sergiu
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1234 - 1241