Design of multistable systems via partial synchronization

被引:5
|
作者
Khan, Mohammad Ali [1 ]
Nag, Mayurakshi [2 ]
Poria, Swarup [2 ]
机构
[1] Ramananda Coll, Dept Math, Bishnupur 722122, India
[2] Univ Calcutta, Dept Appl Math, Kolkata 700009, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 89卷 / 02期
关键词
Multistability; Lorenz system; Lu system; bifurcation analysis; synchronization; CHAOTIC SYSTEMS;
D O I
10.1007/s12043-017-1422-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many researchers introduce schemes for designing multistable systems by coupling two identical systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme, we synchronize i number ( 1 <= i <= m - 1) of state variables completely and keep constant difference between j ( 1 <= j <= m - 1, i + j = m) number of state variables of two coupled m-dimensional different dynamical systems to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show the effectiveness of our scheme.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] TRANSIENT PROCESS DYNAMICS OF FREQUENCY MULTISTABLE SYSTEMS HAVING PULSE-TONE SYNCHRONIZATION
    ABGARYAN, VV
    MINAKOVA, II
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1981, 24 (12): : 48 - 53
  • [32] Design of Controls for Boundedness of Trajectories of Multistable State Periodic Systems
    Mendoza-Avila, Jesus
    Efimov, Denis
    Mercado-Uribe, Angel
    Schiffer, Johannes
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 6647 - 6652
  • [33] Controlled synchronization of chaotic systems with uncertainties via a sliding mode control design
    Bowong, S
    Kakmeni, FMM
    Tchawoua, C
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [34] Synchronization of two Rossler chaotic systems via adaptive backstepping with modular design
    Maghraoui, N
    Belghith, S
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 131 - 134
  • [35] Simple example of partial synchronization of chaotic systems
    Hasler, M.
    Maistrenko, Yu.
    Popovych, O.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (5-B):
  • [36] Partial phase synchronization for multivariate synchronizing systems
    Schelter, Bjorn
    Winterhalder, Matthias
    Dahlhaus, Rainer
    Kurths, Juergen
    Timmer, Jens
    PHYSICAL REVIEW LETTERS, 2006, 96 (20)
  • [37] Simple example of partial synchronization of chaotic systems
    Hasler, M
    Maistrenko, Y
    Popovych, O
    PHYSICAL REVIEW E, 1998, 58 (05): : 6843 - 6846
  • [38] Synchronization on Riemannian Manifolds: Multiply Connected Implies Multistable
    Markdahl, Johan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (09) : 4311 - 4318
  • [39] Delay-induced multistable synchronization of biological oscillators
    Ernst, U
    Pawelzik, K
    Geisel, T
    PHYSICAL REVIEW E, 1998, 57 (02): : 2150 - 2162
  • [40] An approach of partial control design for system control and synchronization
    Hu, Wuhua
    Wang, Jiang
    Li, Xiumin
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1410 - 1417