Electronic Cleansing for Computed Tomography (CT) Colonography Using a Scale-Invariant Three-Material Model

被引:22
|
作者
Serlie, Iwo W. O. [1 ,2 ]
Vos, Frans M. [3 ]
Truyen, Roel [2 ]
Post, Frits H. [4 ]
Stoker, Jaap [3 ]
van Vliet, Lucas J. [1 ]
机构
[1] Delft Univ Technol, Dept Image Sci & Technol, NL-2628 CJ Delft, Netherlands
[2] Philips Healthcare, Healthcare Informat, NL-5680 DA Best, Netherlands
[3] Univ Amsterdam, Acad Med Ctr, Dept Radiol, NL-1105 AZ Amsterdam, Netherlands
[4] Delft Univ Technol, Dept Mediamat, NL-2628 CJ Delft, Netherlands
关键词
Computed tomography (CT) colonography; partial volume (PV) effect; rotation and scale invariance; T-junctions; translation; virtual colonoscopy; 3D; 2D;
D O I
10.1109/TBME.2010.2040280
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A well-known reading pitfall in computed tomography (CT) colonography is posed by artifacts at T-junctions, i.e., locations where air-fluid levels interface with the colon wall. This paper presents a scale-invariant method to determine material fractions in voxels near such T-junctions. The proposed electronic cleansing method particularly improves the segmentation at those locations. The algorithm takes a vector of Gaussian derivatives as input features. The measured features are made invariant to the orientation-dependent apparent scale of the data and normalized in a way to obtain equal noise variance. A so-called parachute model is introduced that maps Gaussian derivatives onto material fractions near T-junctions. Projection of the noisy derivatives onto the model yields improved estimates of the true, underlying feature values. The method is shown to render an accurate representation of the object boundary without artifacts near junctions. Therefore, it enhances the reading of CT colonography in a 3-D display mode.
引用
收藏
页码:1306 / 1317
页数:12
相关论文
共 50 条
  • [31] WELL RESERVOIR MODEL IDENTIFICATION USING TRANSLATION AND SCALE-INVARIANT HIGHER-ORDER NETWORKS
    KUMOLUYI, A
    DALTABAN, TS
    KONCAR, N
    JONES, AJ
    ARCHER, JS
    NEURAL COMPUTING & APPLICATIONS, 1995, 3 (03): : 128 - 138
  • [32] Meso-scale framework for modeling granular material using computed tomography
    Turner, Anne K.
    Kim, Felix H.
    Penumadu, Dayakar
    Herbold, Eric B.
    COMPUTERS AND GEOTECHNICS, 2016, 76 : 140 - 146
  • [33] Classifying CT image data into material fractions by a scale and rotation invariant edge model
    Serlie, Iwo W. O.
    Vos, Frans M.
    Truyen, Roel
    Post, Frits H.
    van Vliet, Lucas J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2891 - 2904
  • [34] Model-Independent Phenotyping of C. elegans Locomotion Using Scale-Invariant Feature Transform
    Koren, Yelena
    Sznitman, Raphael
    Arratia, Paulo E.
    Carls, Christopher
    Krajacic, Predrag
    Brown, Andre E. X.
    Sznitman, Josue
    PLOS ONE, 2015, 10 (03):
  • [35] Efficient and robust model-to-image alignment using 3D scale-invariant features
    Toews, Matthew
    Wells, William M., III
    MEDICAL IMAGE ANALYSIS, 2013, 17 (03) : 271 - 282
  • [36] A SHAPE-BASED OBJECT CLASS DETECTION MODEL USING LOCAL SCALE-INVARIANT FRAGMENT FEATURE
    Wei, Hui
    Xiao, Jinwen
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5941 - 5945
  • [37] Material Decomposition in Spectral Computed Tomography (CT) Using a Likelihood-Based Method
    Berenji, B.
    Klopfer, M.
    Molloi, S.
    MEDICAL PHYSICS, 2012, 39 (06) : 3989 - 3990
  • [38] Detection of Bone Marrow Edema in Patients with Osteoid Osteoma Using Three-Material Decomposition with Dual-Layer Spectral CT
    Gassert, Florian T.
    Hammel, Johannes
    Hofmann, Felix C.
    Neumann, Jan
    von Schacky, Claudio E.
    Gassert, Felix G.
    Pfeiffer, Daniela
    Pfeiffer, Franz
    Makowski, Marcus R.
    Woertler, Klaus
    Gersing, Alexandra S.
    Schwaiger, Benedikt J.
    DIAGNOSTICS, 2021, 11 (06)
  • [39] 3D medical model registration using scale-invariant coherent point drift algorithm for AR
    Zhang, Xiaoxing
    Guo, Ruifeng
    Tong, Zhiyong
    Wang, Hongliang
    COMPUTERS & GRAPHICS-UK, 2025, 127
  • [40] Hybrid ant colony optimization model for image retrieval using scale-invariant feature transform local descriptor
    Raveendra, K.
    Vinothkanna, R.
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 74 : 281 - 291