On the degeneration of the Frolicher spectral sequence and small deformations

被引:1
|
作者
Maschio, Michele [1 ]
机构
[1] None Parma, Parma, Italy
来源
COMPLEX MANIFOLDS | 2020年 / 7卷 / 01期
关键词
Complex Geometry; Spectral Sequences; Psueudo-differential Operators;
D O I
10.1515/coma-2020-0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of the degeneration at the second step of the Frolicher spectral sequence of a C-infinity family of compact complex manifolds. Using techniques from deformation theory and adapting them to pseudo-differential operators we prove a result a la Kodaira-Spencer for the dimension of the second step of the Frolicher spectral sequence and we prove that, under a certain hypothesis, the degeneration at the second step is an open property under small deformations of the complex structure.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 50 条
  • [21] DEFORMATIONS OF SMALL TOES
    DELAGOUTTE, JP
    REVUE DU PRATICIEN, 1981, 31 (15): : 1053 - 1056
  • [22] BIDIMENSIONAL SPECTRAL-ANALYSIS OF A CROSSED LINES GRATING - APPLICATION TO THE DETERMINATION OF LARGE AND SMALL DEFORMATIONS
    BREMAND, F
    LAGARDE, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1988, 307 (07): : 683 - 688
  • [23] SMALL DEFORMATIONS ON LARGE DEFORMATIONS IN BKZ VISCOELASTIC LIQUIDS
    SADD, MH
    BERNSTEIN, B
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1974, 12 (03) : 205 - 219
  • [24] A Compact Spectral Descriptor for Shape Deformations
    Sible, Skylar
    Iza-Teran, Rodrigo
    Garcke, Jochen
    Aulig, Nikola
    Wollstadt, Patricia
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1930 - 1937
  • [25] Twists and Spectral Triples for Isospectral Deformations
    Andrzej Sitarz
    Letters in Mathematical Physics, 2001, 58 : 69 - 79
  • [26] RESONANCES, RESONANCE FUNCTIONS AND SPECTRAL DEFORMATIONS
    BALSLEV, E
    LECTURE NOTES IN PHYSICS, 1984, 211 : 27 - 63
  • [27] Invariants of Isospectral Deformations and Spectral Rigidity
    Popov, Georgi
    Topalov, Peter
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (03) : 369 - 446
  • [28] Twists and spectral triples for isospectral deformations
    Sitarz, A
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 58 (01) : 69 - 79
  • [29] Quantum Spectral Problems and Isomonodromic Deformations
    Mikhail Bershtein
    Pavlo Gavrylenko
    Alba Grassi
    Communications in Mathematical Physics, 2022, 393 (1) : 347 - 418
  • [30] Quantum Spectral Problems and Isomonodromic Deformations
    Bershtein, Mikhail
    Gavrylenko, Pavlo
    Grassi, Alba
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (01) : 347 - 418