Object detection algorithm based on feature enhancement

被引:3
|
作者
Zheng, Qiumei [1 ]
Wang, Lulu [1 ]
Wang, Fenghua [1 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao, Peoples R China
关键词
convolution neural network; Gaussian feedback model; dilated convolution network; multi-scale feature fusion; object detection;
D O I
10.1088/1361-6501/abe740
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, many excellent algorithms have made great progress in object detection, but there are also problems in these algorithms' performance on targets of different sizes, and in particular in small object detection. Aiming at the problem of insufficient feature representation by the feature extractor, in this paper we propose a lightweight algorithm to improve feature extraction. The algorithm includes three modules. First, considering that the shallow features in feature extraction contain much background noise, in this paper we design a multi-level feedback propagation model based on a Gaussian high-pass filter. The shallow layers are enhanced using the filter and then back-propagated to add the upper shallow layer features and obtain new shallow layer features. This process is performed on the newly generated shallow layer for n iterations, which is beneficial for enhancing targets in the foreground area and suppressing background noise. Second, we form a stacked dilated convolution module with different dilation rates to cover the entire deep feature layer densely, which enlarges the receptive field and enriches the contextual information. Finally, we build a multi-scale fusion module to fuse the above-mentioned enhanced shallow and deep features to obtain output features with powerful representational ability for detection tasks. In addition, the model is easily embedded into existing approaches to enhance their performance. We build the model on the VGG-16 and ResNet-50 backbones and successfully applied it on Darknet-19 and Darknet-53 to verify its effectiveness and stability. The experiments on the COCO dataset prove that the proposed algorithm outperforms the state-of-art methods, with a mean average precision improvement reaching 2% on average. The effect is remarkable on small targets and complex backgrounds. Furthermore, it does not affect the detection speed significantly, so real time detection requirements can still be met.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] VFEDet: A Variational Information Bottleneck Based Feature Enhancement Object Detection Network
    Wu, Mingyu
    Zhu, Ming
    Tang, Ruixue
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [42] Oriented Object Detection Based on Foreground Feature Enhancement in Remote Sensing Images
    Lin, Peng
    Wu, Xiaofeng
    Wang, Bin
    REMOTE SENSING, 2022, 14 (24)
  • [43] YOLO-Ships: Lightweight ship object detection based on feature enhancement
    Zhang, Yu
    Chen, Wenhui
    Li, Songlin
    Liu, Hailong
    Hu, Qing
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [44] Lightweight Ship Object Detection Algorithm for Remote Sensing Images Based on Multi-scale Perception and Feature Enhancement
    Sun, Wei
    Shen, Xinyi
    Zhang, Xiaorui
    Guan, Fei
    Photogrammetric Engineering and Remote Sensing, 2025, 91 (02): : 111 - 122
  • [45] Feature enhancement modules applied to a feature pyramid network for object detection
    Liu, Min
    Lin, Kun
    Huo, Wujie
    Hu, Lanlan
    He, Zhizi
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 617 - 629
  • [46] Feature enhancement modules applied to a feature pyramid network for object detection
    Min Liu
    Kun Lin
    Wujie Huo
    Lanlan Hu
    Zhizi He
    Pattern Analysis and Applications, 2023, 26 : 617 - 629
  • [47] Construction of a feature enhancement network for small object detection
    Zhang, Hongyun
    Li, Miao
    Miao, Duoqian
    Pedrycz, Witold
    Wang, Zhaoguo
    Jiang, Minghui
    PATTERN RECOGNITION, 2023, 143
  • [48] Lateral Feature Enhancement Network for Page Object Detection
    Shi, Cao
    Xu, Canhui
    Bi, Hengyue
    Cheng, Yuanzhi
    Li, Yuteng
    Zhang, Honghong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] Semi Solid-State LiDAR Object Detection Algorithm Enhanced by Feature Stability Enhancement
    Jin L.
    Zhang H.
    Guo B.
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (06): : 1015 - 1024
  • [50] Tiny object detection with context enhancement and feature purification
    Xiao, Jinsheng
    Guo, Haowen
    Zhou, Jian
    Zhao, Tao
    Yu, Qiuze
    Chen, Yunhua
    Wang, Zhongyuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211