A comprehensive overview of RDF for spatial and spatiotemporal data management

被引:3
|
作者
Zhang, Fu [1 ]
Lu, Qingzhe [1 ]
Du, Zhenjun [2 ]
Chen, Xu [3 ]
Cao, Chunhong [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Peoples R China
[2] SIASUN Robot & Automat CO Ltd, Shenyang, Peoples R China
[3] North Minzu Univ, Yinchuan, Ningxia, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
NEXT-GENERATION; KNOWLEDGE-BASE; SEMANTIC WEB; TIME;
D O I
10.1017/S0269888921000084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, a large amount of spatial and spatiotemporal RDF data has been shared and exchanged on the Internet and various applications. Resource Description Framework (RDF) is widely accepted for representing and processing data in different (including spatiotemporal) application domains. The effective management of spatial and spatiotemporal RDF data are becoming more and more important. A lot of work has been done to study how to represent, query, store, and manage spatial and spatiotemporal RDF data. In order to grasp and learn the main ideas and research results of spatial and spatiotemporal RDF data, in this paper, we provide a comprehensive overview of RDF for spatial and spatiotemporal data management. We summarize spatial and spatiotemporal RDF data management from several essential aspects such as representation, querying, storage, performance assessment, datasets, and management tools. In addition, the direction of future research and some comparisons and analysis are also discussed in depth.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Cloud-based RDF Data Management
    Kaoudi, Zoi
    Manolescu, Ioana
    [J]. SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 725 - 729
  • [32] UnifiedViews: An ETL tool for RDF data management
    Knap, Tomas
    Hanecak, Peter
    Klimek, Jakub
    Mader, Christian
    Necasky, Martin
    Van Nuffelen, Bert
    Skoda, Petr
    [J]. SEMANTIC WEB, 2018, 9 (05) : 661 - 676
  • [33] Graph-Based RDF Data Management
    Zou L.
    Özsu M.T.
    [J]. Data Science and Engineering, 2017, 2 (1) : 56 - 70
  • [34] An RDF Data Management System for Conflict Casualties
    Fatah, Yad
    Nourallah, Mark
    Wahab, Lynn
    Abu Salem, Fatima K.
    Elbassuoni, Shady
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4711 - 4715
  • [35] Scalable RDF Data Management With a Touch of Uncertainty
    Theobald, Martin
    [J]. SCALABLE UNCERTAINTY MANAGEMENT (SUM 2017), 2017, 10564 : XIV - XVI
  • [36] The multidimensional persistent tree: A spatiotemporal data management structure suitable for spatial search
    Teraoka, T
    Maruyama, M
    Nakamura, Y
    Nishida, S
    [J]. SYSTEMS AND COMPUTERS IN JAPAN, 1996, 27 (06) : 60 - 72
  • [37] Multidimensional persistent tree: A spatiotemporal data management structure suitable for spatial search
    Mitsubishi Electric Corp, Amagasaki, Japan
    [J]. Syst Comput Jpn, 6 (60-72):
  • [38] Top-k relevant semantic place retrieval on spatiotemporal RDF data
    Dingming Wu
    Hao Zhou
    Jieming Shi
    Nikos Mamoulis
    [J]. The VLDB Journal, 2020, 29 : 893 - 917
  • [39] H2RDF+ : An Efficient Data Management System for Big RDF Graphs
    Papailiou, Nikolaos
    Tsoumakos, Dimitrios
    Konstantinou, Ioannis
    Karras, Panagiotis
    Koziris, Nectarios
    [J]. SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 909 - 912
  • [40] Diversified Stress Testing of RDF Data Management Systems
    Aluc, Gunes
    Hartig, Olaf
    Ozsu, M. Tamer
    Daudjee, Khuzaima
    [J]. SEMANTIC WEB - ISWC 2014, PT I, 2014, 8796 : 197 - 212