A comprehensive overview of RDF for spatial and spatiotemporal data management

被引:3
|
作者
Zhang, Fu [1 ]
Lu, Qingzhe [1 ]
Du, Zhenjun [2 ]
Chen, Xu [3 ]
Cao, Chunhong [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Peoples R China
[2] SIASUN Robot & Automat CO Ltd, Shenyang, Peoples R China
[3] North Minzu Univ, Yinchuan, Ningxia, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
NEXT-GENERATION; KNOWLEDGE-BASE; SEMANTIC WEB; TIME;
D O I
10.1017/S0269888921000084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, a large amount of spatial and spatiotemporal RDF data has been shared and exchanged on the Internet and various applications. Resource Description Framework (RDF) is widely accepted for representing and processing data in different (including spatiotemporal) application domains. The effective management of spatial and spatiotemporal RDF data are becoming more and more important. A lot of work has been done to study how to represent, query, store, and manage spatial and spatiotemporal RDF data. In order to grasp and learn the main ideas and research results of spatial and spatiotemporal RDF data, in this paper, we provide a comprehensive overview of RDF for spatial and spatiotemporal data management. We summarize spatial and spatiotemporal RDF data management from several essential aspects such as representation, querying, storage, performance assessment, datasets, and management tools. In addition, the direction of future research and some comparisons and analysis are also discussed in depth.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] SRX: efficient management of spatial RDF data
    Konstantinos Theocharidis
    John Liagouris
    Nikos Mamoulis
    Panagiotis Bouros
    Manolis Terrovitis
    [J]. The VLDB Journal, 2019, 28 : 703 - 733
  • [2] SRX: efficient management of spatial RDF data
    Theocharidis, Konstantinos
    Liagouris, John
    Mamoulis, Nikos
    Bouros, Panagiotis
    Terrovitis, Manolis
    [J]. VLDB JOURNAL, 2019, 28 (05): : 703 - 733
  • [3] Query relaxation of fuzzy spatiotemporal RDF data
    Bai, Luyi
    Di, Xiaofeng
    Zhu, Lin
    [J]. APPLIED INTELLIGENCE, 2022, 52 (11) : 13195 - 13213
  • [4] Fuzzy Spatiotemporal Data Modeling and Operations in RDF
    Zhu, Lin
    Meng, Xiangfu
    Mi, Zehui
    [J]. INFORMATION, 2022, 13 (10)
  • [5] Query relaxation of fuzzy spatiotemporal RDF data
    Luyi Bai
    Xiaofeng Di
    Lin Zhu
    [J]. Applied Intelligence, 2022, 52 : 13195 - 13213
  • [6] Approximate Matching of Spatiotemporal RDF Data by Path
    Lu, Jiajia
    Di, Xiaofeng
    Bai, Luyi
    [J]. 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), 2020, : 172 - 179
  • [7] Algebraic Operations on Spatiotemporal Data Based on RDF
    Zhu, Lin
    Li, Nan
    Bai, Luyi
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (02)
  • [8] Mapping Spatiotemporal Data to RDF: A SPARQL Endpoint for Brussels
    Vaisman, Alejandro
    Chentout, Kevin
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (08)
  • [9] Spatiotemporal RDF Data Query Based on Subgraph Matching
    Meng, Xiangfu
    Zhu, Lin
    Li, Qing
    Zhang, Xiaoyan
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (12)
  • [10] DATABASE MANAGEMENT SYSTEMS FOR SPATIAL DATA STRUCTURES - AN OVERVIEW
    Imbroane, A. L. M.
    Bucur, L.
    [J]. GEOGRAPHIA TECHNICA, 2007, 2 (01): : 32 - 42