View-Invariant Dynamic Texture Recognition using a Bag of Dynamical Systems

被引:0
|
作者
Ravichandran, Avinash [1 ]
Chaudhry, Rizwan [1 ]
Vidal, Rene [1 ]
机构
[1] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the problem of categorizing videos of dynamic textures under varying view-point. We propose to model each video with a collection of Linear Dynamics Systems (LDSs) describing the dynamics of spatiotemporal video patches. This bag of systems (BoS) representation is analogous to the bag of features (BoF) representation, except that we use LDSs as feature descriptors. This poses several technical challenges to the BoF framework. Most notably, LDSs do not live in a Euclidean space, hence novel methods for clustering LDSs and computing codewords of LDSs need to be developed. Our framework makes use of nonlinear dimensionality reduction and clustering techniques combined with the Martin distance for LDSs for tackling these issues. Our experiments show that our BoS approach can be used for recognizing dynamic textures in challenging scenarios, which could not be handled by existing dynamic texture recognition methods.
引用
收藏
页码:1651 / 1657
页数:7
相关论文
共 50 条
  • [21] A New Method of View-Invariant Human Activity Recognition
    Su, Han
    Wang, Wenjie
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 1648 - 1652
  • [22] View-invariant face recognition from a single sample
    Ng, Hui-Fuang
    WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS, 2006, : 212 - 216
  • [23] Towards Fast, View-Invariant Human Action Recognition
    Cherla, Srikanth
    Kulkarni, Kaustubh
    Kale, Amit
    Ramasubramanian, V.
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 1650 - 1657
  • [24] Latent Multitask Learning for View-Invariant Action Recognition
    Mahasseni, Behrooz
    Todorovic, Sinisa
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 3128 - 3135
  • [25] On view-invariant gait recognition: a feature selection solution
    Jia, Ning
    Sanchez, Victor
    Li, Chang-Tsun
    IET BIOMETRICS, 2018, 7 (04) : 287 - 295
  • [26] A New View-Invariant Feature for Cross-View Gait Recognition
    Kusakunniran, Worapan
    Wu, Qiang
    Zhang, Jian
    Ma, Yi
    Li, Hongdong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (10) : 1642 - 1653
  • [27] Joint Subspace Learning for View-Invariant Gait Recognition
    Liu, Nini
    Lu, Jiwen
    Tan, Yap-Peng
    IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (07) : 431 - 434
  • [28] On Temporal Order Invariance for View-Invariant Action Recognition
    Anwaar-ul-Haq
    Gondal, Iqbal
    Murshed, Manzur
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (02) : 203 - 211
  • [29] A survey about view-invariant human action recognition
    Nghia Pham Trong
    Anh Truong Minh
    Nguyen, Hung
    Kazunori, Kotani
    Bac Le Hoai
    2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 699 - 704
  • [30] Fast and Robust Framework for View-invariant Gait Recognition
    Jia, Ning
    Li, Chang-Tsun
    Sanchez, Victor
    Liew, Alan Wee-Chung
    2017 5TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF 2017), 2017,