On spherical submanifolds with finite type spherical Gauss map

被引:9
|
作者
Bektas, Burcu [1 ]
Dursun, Ugur [2 ]
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey
[2] Isik Univ, Dept Math, Sile Campus, TR-034980 Istanbul, Turkey
关键词
Finite type map; spherical Gauss map; mean curvature; isoparametric hypersurface;
D O I
10.1515/advgeom-2016-0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chen and Lue (2007) initiated the study of spherical submanifolds with finite type spherical Gauss map. In this paper, we firstly prove that a submanifold M-n of the unit sphere Sm-1 has non-mass-symmetric 1-type spherical Gauss map if and only if M-n is an open part of a small n-sphere of a totally geodesic (n+1)-sphere Sn+1 subset of Sm-1. Then we show that a non-totally umbilical hypersurface M of Sn+1 with nonzero constant mean curvature in Sn+1 has mass-symmetric 2-type spherical Gauss map if and only if the scalar curvature curvature of M is constant. Finally, we classify constant mean curvature surfaces in S-3 with mass-symmetric 2-type spherical Gauss map.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 50 条
  • [12] FINITE-TYPE RULED MANIFOLDS SHAPED ON SPHERICAL SUBMANIFOLDS
    FERRANDEZ, A
    GARAY, OJ
    LUCAS, P
    ARCHIV DER MATHEMATIK, 1991, 57 (01) : 97 - 104
  • [13] Spherical Ruled Surfaces in S3 Characterized by the Spherical Gauss Map
    Kim, Young Ho
    Jung, Sun Mi
    MATHEMATICS, 2020, 8 (12) : 1 - 14
  • [14] SUBMANIFOLDS WITH BIHARMONIC GAUSS MAP
    Balmus, A.
    Oniciuc, C.
    Montaldo, S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (12) : 1585 - 1603
  • [15] Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map
    Chen, Bang-Yen
    Guler, Erhan
    Yayli, Yusuf
    Hacisalihoglu, Hasan Hilmi
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 4 - 47
  • [16] ON SPHERICAL SUBMANIFOLDS WITH NULLITY
    DAJCZER, M
    GROMOLL, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (01) : 99 - 100
  • [17] The Gauss map of a hypersurface in Euclidean sphere and the spherical Legendrian duality
    Nagai, Takayuki
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (02) : 545 - 554
  • [18] The Gauss map of submanifolds in the Heisenberg group
    Petrov, E. V.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (04) : 516 - 532
  • [19] RULED SUBMANIFOLDS WITH HARMONIC GAUSS MAP
    Kim, Dong-Soo
    Kim, Young Ho
    Jung, Sun Mi
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01): : 53 - 76
  • [20] Spherical submanifolds in a Euclidean space
    Alodan, Haila
    Deshmukh, Sharief
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 1 - 11