Nonexistence of H theorems for the athermal lattice Boltzmann models with polynomial equilibria

被引:28
|
作者
Yong, WA
Luo, LS
机构
[1] Heidelberg Univ, IWR, D-69120 Heidelberg, Germany
[2] NASA, Langley Res Ctr, ICASE, Hampton, VA 23681 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.051105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We prove that no H theorem exists for the athermal lattice Boltzmann equation with polynomial equilibria satisfying the conservation laws exactly and explicitly. The proof is demonstrated by using the seven-velocity model in a triangular lattice in two dimensions, and can be readily extended to other lattice Boltzmann models in two and three dimensions. Some issues pertinent to the numerical instabilities of the lattice Boltzmann method are disscussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Comment on "Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations"
    Karlin, I. V.
    Succi, S.
    Chikatamarla, S. S.
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [22] Galilean invariant viscosity term for an athermal integer lattice Boltzmann automaton in three dimensions
    Geier, M
    Greiner, A
    Korvink, JG
    NSTI NANOTECH 2004, VOL 1, TECHNICAL PROCEEDINGS, 2004, : 255 - 258
  • [23] Reply to "Comment on 'Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations'"
    Luo, Li-Shi
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [24] Uniform Polynomial Equations Providing Higher-order Multi-dimensional Models in Lattice Boltzmann Theory
    Shim, Jae Wan
    1ST EUROPEAN CONFERENCE ON GAS MICRO FLOWS (GASMEMS 2012), 2012, 362
  • [25] NONEXISTENCE OF SINGLE-WAGE EQUILIBRIA IN SEARCH MODELS WITH ADVERSE SELECTION
    ALBRECHT, JW
    VROMAN, SB
    REVIEW OF ECONOMIC STUDIES, 1992, 59 (03): : 617 - 624
  • [26] Lattice-Boltzmann Models for Heat Transfer
    Chenghai SUN
    Communications in Nonlinear Science & Numerical Simulation, 1997, (04) : 212 - 216
  • [27] Lattice Boltzmann models for nonequilibrium gas flows
    Tang, Gui-Hua
    Zhang, Yong-Hao
    Emerson, David R.
    PHYSICAL REVIEW E, 2008, 77 (04):
  • [28] Lattice Boltzmann method for microfluidics: models and applications
    Junfeng Zhang
    Microfluidics and Nanofluidics, 2011, 10 : 1 - 28
  • [29] Improved Lattice Boltzmann Models for Precipitation and Dissolution
    Pedersen, J.
    Jettestuen, E.
    Vinningland, J. L.
    Hiorth, A.
    TRANSPORT IN POROUS MEDIA, 2014, 104 (03) : 593 - 605
  • [30] Lifting in hybrid lattice Boltzmann and PDE models
    Vanderhoydonc, Y.
    Vanroose, W.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (02) : 67 - 78