Kardar-Parisi-Zhang growth of amorphous silicon on Si/SiO2

被引:21
|
作者
Lutt, M
Schlomka, JP
Tolan, M
Stettner, J
Seeck, OH
Press, W
机构
[1] Institut für Experimentalphysik, Christian-Albrechts-Universität Kiel, 24098 Kiel
来源
PHYSICAL REVIEW B | 1997年 / 56卷 / 07期
关键词
D O I
10.1103/PhysRevB.56.4085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Amorphous silicon films with thicknesses ranging from about 20 Angstrom to 2000 Angstrom were evaporated onto silicon substrates. The surface and interfaces were then investigated by specular and diffuse x-ray scattering experiments in the region of total external reflection. A model of self-affine interfaces was used for the refinement. The rms roughness sigma and the in-plane correlation length xi vs film thickness follow power laws with exponents of beta=0.1+/-0.05 and 1/z=0.6+/-0.2, and the average Hurst parameter is h=0.23+/-0.05. The resulting parameters are compatible with growth models based on the Kardar-Parisi-Zhang equation.
引用
收藏
页码:4085 / 4091
页数:7
相关论文
共 50 条
  • [41] Recent developments on the Kardar-Parisi-Zhang surface-growth equation
    Wio, Horacio S.
    Escudero, Carlos
    Revelli, Jorge A.
    Deza, Roberto R.
    de la Lama, Marta S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1935): : 396 - 411
  • [42] Vortex Dynamics in a Compact Kardar-Parisi-Zhang System
    Zamora, A.
    Lad, N.
    Szymanska, M. H.
    PHYSICAL REVIEW LETTERS, 2020, 125 (26)
  • [43] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Ferrari, Patrik L.
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (03) : 377 - 399
  • [44] Efimov effect at the Kardar-Parisi-Zhang roughening transition
    Nakayama, Yu
    Nishida, Yusuke
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [45] Anomaly in numerical integrations of the Kardar-Parisi-Zhang equation
    Lam, CH
    Shin, FG
    PHYSICAL REVIEW E, 1998, 57 (06): : 6506 - 6511
  • [46] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Bhattacharjee, JK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : L93 - L96
  • [47] Random geometry and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    LaGatta, Tom
    Cuerno, Rodolfo
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [48] Dimensional fragility of the Kardar-Parisi-Zhang universality class
    Nicoli, Matteo
    Cuerno, Rodolfo
    Castro, Mario
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [49] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Patrik L. Ferrari
    Tomohiro Sasamoto
    Herbert Spohn
    Journal of Statistical Physics, 2013, 153 : 377 - 399
  • [50] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Schwartz, Moshe
    Perlsman, Ehud
    PHYSICAL REVIEW E, 2012, 85 (05):