Deep Reinforcement Learning for cell on/off energy saving on Wireless Networks

被引:7
|
作者
Pujol-Roigl, Joan S. [1 ]
Wu, Shangbin [1 ]
Wang, Yue [1 ]
Choi, Minsuk [2 ]
Park, Intaik [2 ]
机构
[1] Samsung Elect R&D Inst UK, Staines TW18 4QE, Surrey, England
[2] Samsung Res, Seoul R&D Campus, Seoul, South Korea
关键词
Reinforcement learning; Energy Saving; Cell on/off; Deep Neural Networks;
D O I
10.1109/GLOBECOM46510.2021.9685279
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Increased network traffic demands have led to extremely dense network deployments. This translates to significant growth in energy consumption at the radio access networks, resulting in high network operation costs (OPEX). In this work, we apply deep reinforcement learning to reduce the energy consumption at the base station in dense wireless networks, by allowing cells that overlap in geographical areas to be put in standby mode according to the changing network conditions. We start by formulating the problem of the cell on/off energy saving in dense wireless networks as a Markov decision process. Then, a deep reinforcement learning (DRL) solution is proposed. This DRL solution takes into account different key performance indicators (KPIs) of both the network and user equipment and aims to reduce the energy consumed by the network without significantly impacting the overall KPIs. The performance of the proposed solution is evaluated using a practical network simulator.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Energy-Saving Predictive Video Streaming with Deep Reinforcement Learning
    Liu, Dong
    Zhao, Jianyu
    Yang, Chenyang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [22] Deep Reinforcement Learning for Energy-Efficient Federated Learning in UAV-Enabled Wireless Powered Networks
    Quang Vinh Do
    Quoc-Viet Pham
    Hwang, Won-Joo
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 99 - 103
  • [23] Deep Reinforcement Learning-Based Edge Caching in Single-Cell Wireless Networks
    Wu, Rong
    Li, Qiang
    Ge, Xiaohu
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 298 - 303
  • [24] Energy consumption prediction method of energy saving building based on deep reinforcement learning
    He, Chuan
    Xiong, Ying
    Lin, Yeda
    Yu, Lie
    Xiong, Hui-Hua
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2022, 44 (5-6) : 524 - 536
  • [25] Distributed Beamforming Techniques for Cell-Free Wireless Networks Using Deep Reinforcement Learning
    Fredj, Firas
    Al-Eryani, Yasser
    Maghsudi, Setareh
    Akrout, Mohamed
    Hossain, Ekram
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (02) : 1186 - 1201
  • [26] Optimizing energy harvesting in wireless body area networks: A deep reinforcement learning approach to dynamic sampling
    Mohammadi, Razieh
    Shirmohammadi, Zahra
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 157 - 175
  • [27] Deep reinforcement learning and enhanced optimization for real-time energy management in wireless sensor networks
    Sachithanandam, Vidhya
    Jessintha, D.
    Balaji, V. S.
    Manoharan, Mathankumar
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2025, 45
  • [28] Joint Energy Replenishment and Data Collection Based on Deep Reinforcement Learning for Wireless Rechargeable Sensor Networks
    Zhang, Lingli
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 1052 - 1062
  • [29] LoRa-RL: Deep Reinforcement Learning for Resource Management in Hybrid Energy LoRa Wireless Networks
    Hamdi, Rami
    Baccour, Emna
    Erbad, Aiman
    Qaraqe, Marwa
    Hamdi, Mounir
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (09) : 6458 - 6476
  • [30] Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks
    Yu, Yiding
    Wang, Taotao
    Liew, Soung Chang
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,