High-throughput gene silencing using cell arrays

被引:39
|
作者
Vanhecke, D [1 ]
Janitz, M [1 ]
机构
[1] Max Planck Inst Mol Genet, Dept Vertebrate Genom, D-14195 Berlin, Germany
关键词
RNA interference; microarray; reverse transfection; cell array;
D O I
10.1038/sj.onc.1208027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A recently established transfected cell array (TCA) technology has opened new experimental dimensions in the field of functional genomics. Cell arrays allow for transfection of several thousands different DNA molecules in microarray format. The effects of overexpression of hundreds of proteins on cellular physiology can be observed in a single experiment. The TCA technique has also found its application in RNA interference (RNAi) research. Small interfering RNAs (siRNA) as well as plasmid expressing short hairpin RNAs can be transferred into the cells through the process of reverse transfection. The silencing of numerous genes in spatially separated manner can be thus monitored. This review will provide an overview on current concepts concerning combination of cell array and RNAi for high-throughput loss-of-function studies.
引用
收藏
页码:8353 / 8358
页数:6
相关论文
共 50 条
  • [41] Polymer microcantilever arrays for high-throughput separation using a combination of dielectrophoresis and sedimentations
    Lee, Junghun
    Kim, Youngho
    Kim, Younggeun
    Park, Jungyul
    Kim, Byungkyu
    BIOCHIP JOURNAL, 2011, 5 (01) : 8 - 13
  • [42] High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays
    Wang, Jun
    Lin, Min
    Crenshaw, Andrew
    Hutchinson, Amy
    Hicks, Belynda
    Yeager, Meredith
    Berndt, Sonja
    Huang, Wen-Yi
    Hayes, Richard B.
    Chanock, Stephen J.
    Jones, Robert C.
    Ramakrishnan, Ramesh
    BMC GENOMICS, 2009, 10
  • [43] Polymer microcantilever arrays for high-throughput separation using a combination of dielectrophoresis and sedimentations
    Junghun Lee
    Youngho Kim
    Younggeun Kim
    Jungyul Park
    Byungkyu Kim
    BioChip Journal, 2011, 5
  • [44] High-throughput gene discovery in the rat
    Scheetz, TE
    Laffin, JJ
    Berger, B
    Holte, S
    Baumes, SA
    Brown, R
    Chang, S
    Coco, J
    Conklin, J
    Crouch, K
    Donohue, M
    Doonan, G
    Estes, C
    Eyestone, M
    Fishler, K
    Gardiner, J
    Guo, L
    Johnson, B
    Keppel, C
    Kreger, R
    Lebeck, M
    Marcelino, R
    Miljkovich, M
    Perdue, M
    Qui, L
    Rehmann, J
    Reiter, RS
    Rhoads, B
    Schaefer, K
    Smith, C
    Sunjevaric, I
    Trout, K
    Wu, N
    Birkett, CL
    Bischof, J
    Gackle, B
    Gavin, A
    Grundstad, AJ
    Mokrzycki, B
    Moressi, C
    Oleary, B
    Pedretti, K
    Roberts, C
    Robinson, NL
    Smith, M
    Tack, D
    Trivedi, N
    Kucaba, T
    Freeman, T
    Lin, JJC
    GENOME RESEARCH, 2004, 14 (04) : 733 - 741
  • [45] Silencing the crowd:: high-throughput functional genomics in Magnaporthe oryzae
    Caracuel-Rios, Zaira
    Talbot, Nicholas J.
    MOLECULAR MICROBIOLOGY, 2008, 68 (06) : 1341 - 1344
  • [46] High-throughput SNP genotyping on universal bead arrays
    Shen, R
    Fan, JB
    Campbell, D
    Chang, WH
    Chen, J
    Doucet, D
    Yeakley, J
    Bibikova, M
    Garcia, EW
    McBride, C
    Steemers, F
    Garcia, F
    Kermani, BG
    Gunderson, K
    Oliphant, A
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2005, 573 (1-2) : 70 - 82
  • [47] Microbioreactor arrays with parametric control for high-throughput experimentation
    Maharbiz, MM
    Holtz, WJ
    Howe, RT
    Keasling, JD
    BIOTECHNOLOGY AND BIOENGINEERING, 2004, 85 (04) : 376 - 381
  • [48] High-throughput genomic analysis of small-cell lung cancer: Allelotyping using affymetrix husnp arrays
    Tanenbaum D.
    Lindblad-Toh K.
    Lander E.
    Meyerson M.
    Nature Genetics, 2001, 27 (Suppl 4) : 90 - 90
  • [49] High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays
    Cermak, Nathan
    Olcum, Selim
    Delgado, Francisco Feijo
    Wasserman, Steven C.
    Payer, Kristofor R.
    Murakami, Mark A.
    Knudsen, Scott M.
    Kimmerling, Robert J.
    Stevens, Mark M.
    Kikuchi, Yuki
    Sandikci, Arzu
    Ogawa, Masaaki
    Agache, Vincent
    Baleras, Francois
    Weinstock, David M.
    Manalis, Scott R.
    NATURE BIOTECHNOLOGY, 2016, 34 (10) : 1052 - 1059
  • [50] High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays
    Nathan Cermak
    Selim Olcum
    Francisco Feijó Delgado
    Steven C Wasserman
    Kristofor R Payer
    Mark A Murakami
    Scott M Knudsen
    Robert J Kimmerling
    Mark M Stevens
    Yuki Kikuchi
    Arzu Sandikci
    Masaaki Ogawa
    Vincent Agache
    François Baléras
    David M Weinstock
    Scott R Manalis
    Nature Biotechnology, 2016, 34 : 1052 - 1059