INVERSE MULTIPLE SCATTERING WITH PHASELESS MEASUREMENTS

被引:0
|
作者
Lodhi, Muhammad Asad [1 ,3 ]
Ma, Yanting [2 ]
Mansour, Hassan [2 ]
Boufounos, Petros T. [2 ]
Liu, Dehong [2 ]
机构
[1] Rutgers State Univ, Dept Elec & Comp Engn, New Brunswick, NJ 08854 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA USA
[3] MERL, Cambridge, England
关键词
phaseless inverse scattering; nonconvex optimization; nonlinear forward model; phase retrieval; total variation regularization; OPTICAL DIFFRACTION TOMOGRAPHY; RECONSTRUCTION ALGORITHMS; RETRIEVAL;
D O I
10.1109/icassp40776.2020.9053430
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.
引用
收藏
页码:1519 / 1523
页数:5
相关论文
共 50 条
  • [21] Experimental feasibility of phaseless inverse scattering methods for specular reflectivity
    A. van der Lee
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 13 : 755 - 763
  • [22] PHASED AND PHASELESS DOMAIN RECONSTRUCTIONS IN THE INVERSE SCATTERING PROBLEM VIA SCATTERING COEFFICIENTS
    Ammari, Habib
    Chow, Yat Tin
    Zou, Jun
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (03) : 1000 - 1030
  • [23] Phase retrieval in EM inverse scattering from phaseless data
    Institute of Electronics, Chinese Acad. of Sci., Beijing 100080, China
    不详
    [J]. Dianbo Kexue Xuebao, 2008, 4 (727-731):
  • [24] A COEFFICIENT INVERSE PROBLEM WITH A SINGLE MEASUREMENT OF PHASELESS SCATTERING DATA
    Klibanov, Michael, V
    Dinh-Liem Nguyen
    Loc H Nguyen
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (01) : 1 - 27
  • [25] Microwave phaseless inverse scattering setup based on indirect holography
    Laviada, Jaime
    Alvarez-Lopez, Yuri
    Arboleya-Arboleya, Ana
    Garcia-Gonzalez, Cebrian
    Las-Heras, Fernando
    [J]. 2013 7TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2013, : 4057 - 4060
  • [26] Inverse elastic scattering problems with phaseless far field data
    Ji, Xia
    Liu, Xiaodong
    [J]. INVERSE PROBLEMS, 2019, 35 (11)
  • [27] Uniqueness results on phaseless inverse acoustic scattering with a reference ball
    Zhang, Deyue
    Guo, Yukun
    [J]. INVERSE PROBLEMS, 2018, 34 (08)
  • [28] Experimental feasibility of phaseless inverse scattering methods for specular reflectivity
    van der Lee, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (04): : 755 - 763
  • [29] Approximate Lipschitz stability for phaseless inverse scattering with background information
    Sivkin, Vladimir N.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (03): : 441 - 454
  • [30] Explicit Formulas and Global Uniqueness for Phaseless Inverse Scattering in Multidimensions
    Novikov, R. G.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 346 - 359