INVERSE MULTIPLE SCATTERING WITH PHASELESS MEASUREMENTS

被引:0
|
作者
Lodhi, Muhammad Asad [1 ,3 ]
Ma, Yanting [2 ]
Mansour, Hassan [2 ]
Boufounos, Petros T. [2 ]
Liu, Dehong [2 ]
机构
[1] Rutgers State Univ, Dept Elec & Comp Engn, New Brunswick, NJ 08854 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA USA
[3] MERL, Cambridge, England
关键词
phaseless inverse scattering; nonconvex optimization; nonlinear forward model; phase retrieval; total variation regularization; OPTICAL DIFFRACTION TOMOGRAPHY; RECONSTRUCTION ALGORITHMS; RETRIEVAL;
D O I
10.1109/icassp40776.2020.9053430
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We study the problem of reconstructing an object from phaseless measurements in the context of inverse multiple scattering. Our formulation explicitly decouples the variables that represent the unknown object image and the unknown phase, respectively, in the forward model. This enables us to simultaneously optimize over both unknowns with appropriate regularization for each. The resulting optimization problem is nonconvex due to the nonlinear propagation model for multiple scattering and the nonconvex regularization of the phase variables. Nevertheless, we demonstrate experimentally that we can solve the optimization problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)-a convex algorithm, popular for its speed and simplicity-that converges well in our experiments. Numerical results with both simulated and experimentally measured data show that the proposed method outperforms the state-of-the-art phaseless inverse scattering method.
引用
收藏
页码:1519 / 1523
页数:5
相关论文
共 50 条
  • [1] Inverse Scattering for Monochromatic Phaseless Measurements
    Alvarez, Yuri
    Garcia-Fernandez, Maria
    Poli, Lorenzo
    Garcia-Gonzalez, Cebrian
    Rocca, Paolo
    Massa, Andrea
    Las-Heras, Fernando
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (01) : 45 - 60
  • [2] Inverse scattering from phaseless measurements of the total field on a closed curve
    Crocco, L
    D'Urso, M
    Isernia, T
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (04) : 622 - 631
  • [3] Inverse scattering from phaseless measurements of the total field on open lines
    Bucci, Ovidio Mario
    Crocco, Lorenzo
    D'Urso, Michele
    Isernia, Tommaso
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (10) : 2566 - 2577
  • [4] UNIQUE DETERMINATIONS IN INVERSE SCATTERING PROBLEMS WITH PHASELESS NEAR-FIELD MEASUREMENTS
    Zhang, Deyue
    Guo, Yukun
    Sun, Fenglin
    Liu, Hongyu
    [J]. INVERSE PROBLEMS AND IMAGING, 2020, 14 (03) : 569 - 582
  • [5] Phaseless inverse scattering with background information
    Novikov, R. G.
    Sivkin, V. N.
    [J]. INVERSE PROBLEMS, 2021, 37 (05)
  • [6] Phaseless tomographic inverse scattering in Banach spaces
    Estatico, C.
    Fedeli, A.
    Pastorino, M.
    Randazzo, A.
    Tavanti, E.
    [J]. 6TH INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2016, 756
  • [7] An iterative approach to monochromatic phaseless inverse scattering
    Agaltsov, A. D.
    Hohage, T.
    Novikov, R. G.
    [J]. INVERSE PROBLEMS, 2019, 35 (02)
  • [8] Inverse scattering from phaseless data in the freespace
    ZHANG WenJi1
    2 Graduate School of Chinese Academy of Sciences
    [J]. Science China(Information Sciences), 2009, (08) : 1389 - 1398
  • [9] PHASELESS INVERSE SCATTERING AND THE PHASE PROBLEM IN OPTICS
    KLIBANOV, MV
    SACKS, PE
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3813 - 3821
  • [10] Inverse scattering from phaseless data in the freespace
    ZHANG WenJi LI LianLin LI Fang Institute of Electronics Chinese Academy of Sciences Beijing China Graduate School of Chinese Academy of Sciences Beijing China
    [J]. Science in China(Series F:Information Sciences), 2009, 52 (08) : 1389 - 1398