Performance Metrics for Soil Moisture Retrievals and Application Requirements

被引:417
|
作者
Entekhabi, Dara [1 ]
Reichle, Rolf H. [2 ]
Koster, Randal D. [2 ]
Crow, Wade T. [3 ]
机构
[1] MIT, Ralph M Parsons Lab Environm Sci & Engn, Cambridge, MA 02139 USA
[2] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[3] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA
关键词
LAND-SURFACE MODELS; REMOTE-SENSING FOOTPRINTS; FORECAST VERIFICATION; TEMPORAL STABILITY; VARIABILITY; VEGETATION; DYNAMICS; CLIMATE; SGP97;
D O I
10.1175/2010JHM1223.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Quadratic performance metrics such as root-mean-square error (RMSE) and time series correlation are often used to assess the accuracy of geophysical retrievals (satellite measurements) with respect to true fields. These metrics are related; nevertheless, each has advantages and disadvantages. In this study the authors explore the relation between the RMSE and correlation metrics in the presence of biases in the mean as well as in the amplitude of fluctuations (standard deviation) between estimated and true fields. Such biases are common, for example, in satellite retrievals of soil moisture and impose constraints on achievable and meaningful RMSE targets. Last, an approach is introduced for converting a requirement in an application's product into a corresponding requirement for soil moisture accuracy. The approach can help with the formulation of soil moisture measurement requirements. It can also help determine the utility of a given retrieval product for applications.
引用
收藏
页码:832 / 840
页数:9
相关论文
共 50 条
  • [31] Evaluating the soil moisture retrievals for agricultural drought monitoring over Brazil
    Rossato Spatafora, Luciana
    Savi, Patrizia
    Alvala, Regina C. S.
    Cunha, Ana Paula
    Marengo, Jose
    Zeri, Marcelo
    Vall-llossera, Merce
    Plablos, Miriam
    2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [32] Comparing soil moisture retrievals from SMOS and ASCAT over France
    Parrens, M.
    Zakharova, E.
    Lafont, S.
    Calvet, J. -C.
    Kerr, Y.
    Wagner, W.
    Wigneron, J. -P.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (02) : 423 - 440
  • [33] VALIDATION OF SMOS SOIL MOISTURE RETRIEVALS IN AURAJOKI CATCHMENT, WESTERN FINLAND
    Seppanen, Jaakko
    Hallikainen, Martti
    Jakkila, Juho
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [34] Soil Moisture Profile Retrievals Using Reflection of Multifrequency Electromagnetic Signals
    Voronovich, Alexander G.
    Lataitis, Richard J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] Estimating precipitation errors using spaceborne surface soil moisture retrievals
    Crow, W. T.
    Bolten, J. D.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (08)
  • [36] Soil Moisture Retrievals From the WindSat Spaceborne Polarimetric Microwave Radiometer
    Parinussa, Robert M.
    Holmes, Thomas R. H.
    de Jeu, Richard A. M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07): : 2683 - 2694
  • [37] Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART)
    Crow, W. T.
    van den Berg, M. J.
    Huffman, G. J.
    Pellarin, T.
    WATER RESOURCES RESEARCH, 2011, 47
  • [38] MULTI-FREQUENCY SIGNALS OF OPPORTUNITY SOIL MOISTURE RETRIEVALS FOR AGRICULTURAL APPLICATIONS
    Kim, Seho
    Smith, Eric P.
    Nold, Benjamin R.
    Choudhari, Archana S.
    Garrison, James L.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4204 - 4207
  • [39] Length Scales of Hydrological Variability as Inferred from SMAP Soil Moisture Retrievals
    Koster, Randal D.
    Reichle, Rolf H.
    Schubert, Siegfried D.
    Mahanama, Sarith P.
    JOURNAL OF HYDROMETEOROLOGY, 2019, 20 (11) : 2129 - 2146
  • [40] Vegetation signal crosstalk present in official SMAP surface soil moisture retrievals
    Crow, Wade T.
    Feldman, Andrew F.
    REMOTE SENSING OF ENVIRONMENT, 2025, 316