Performance Metrics for Soil Moisture Retrievals and Application Requirements

被引:417
|
作者
Entekhabi, Dara [1 ]
Reichle, Rolf H. [2 ]
Koster, Randal D. [2 ]
Crow, Wade T. [3 ]
机构
[1] MIT, Ralph M Parsons Lab Environm Sci & Engn, Cambridge, MA 02139 USA
[2] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[3] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA
关键词
LAND-SURFACE MODELS; REMOTE-SENSING FOOTPRINTS; FORECAST VERIFICATION; TEMPORAL STABILITY; VARIABILITY; VEGETATION; DYNAMICS; CLIMATE; SGP97;
D O I
10.1175/2010JHM1223.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Quadratic performance metrics such as root-mean-square error (RMSE) and time series correlation are often used to assess the accuracy of geophysical retrievals (satellite measurements) with respect to true fields. These metrics are related; nevertheless, each has advantages and disadvantages. In this study the authors explore the relation between the RMSE and correlation metrics in the presence of biases in the mean as well as in the amplitude of fluctuations (standard deviation) between estimated and true fields. Such biases are common, for example, in satellite retrievals of soil moisture and impose constraints on achievable and meaningful RMSE targets. Last, an approach is introduced for converting a requirement in an application's product into a corresponding requirement for soil moisture accuracy. The approach can help with the formulation of soil moisture measurement requirements. It can also help determine the utility of a given retrieval product for applications.
引用
收藏
页码:832 / 840
页数:9
相关论文
共 50 条
  • [1] Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco
    Merlin, Olivier
    Malbeteau, Yoann
    Notfi, Youness
    Bacon, Stefan
    Er-Raki, Salah
    Khabba, Said
    Jarlan, Lionel
    REMOTE SENSING, 2015, 7 (04) : 3783 - 3807
  • [2] Quantifying value in spaceborne soil moisture retrievals
    Crow, Wade T.
    Bulletin of the American Meteorological Society, 2007, 88 (05) : 624 - 625
  • [3] Reducing multiplicative bias of satellite soil moisture retrievals
    Kornelsen, Kurt C.
    Coulibaly, Paulin
    REMOTE SENSING OF ENVIRONMENT, 2015, 165 : 109 - 122
  • [4] Retrievals of Soil Moisture and Optical Depth from CAROLS
    Parde, M.
    Wigneron, J. -P.
    Zribi, M.
    Kerr, Y.
    Fanise, P.
    Calvet, J. -C.
    Albergel, C.
    Albitar, A.
    Cabot, F.
    Demontoux, F.
    Jacquette, E.
    Lopez-Baeza, E.
    Mialon, A.
    Moisy, C.
    Novello, N.
    Richaume, P.
    Saleh, K.
    Schwank, M.
    Waldteufel, P.
    Zakharova, E.
    Dechambre, M.
    PIERS 2011 MARRAKESH: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, : 80 - 84
  • [5] Assimilation of passive and active microwave soil moisture retrievals
    Draper, C. S.
    Reichle, R. H.
    De Lannoy, G. J. M.
    Liu, Q.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [6] Information theoretic evaluation of satellite soil moisture retrievals
    Kumar, Sujay V.
    Dirmeyer, Paul A.
    Peters-Lidard, Christa D.
    Bindlish, Rajat
    Bolten, John
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 392 - 400
  • [7] IMPACTS OF SOIL SURFACE ROUGHNESS CHANGES ON SMOS SOIL MOISTURE RETRIEVALS
    Walker, Victoria A.
    Hornbuckle, Brian K.
    Cosh, Michael H.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1578 - 1580
  • [8] Comparison of different soil dielectric models for microwave soil moisture retrievals
    Zhang, Linlin
    Meng, Qingyan
    Hu, Die
    Zhang, Ying
    Yao, Shun
    Chen, Xu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (08) : 3054 - 3069
  • [9] A novel method for quantifying value in spaceborne soil moisture retrievals
    Crow, Wade T.
    JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (01) : 56 - 67
  • [10] Validation practices for satellite soil moisture retrievals: What are (the) errors?
    Gruber, A.
    De Lannoy, G.
    Albergel, C.
    Al-Yaari, A.
    Brocca, L.
    Calvet, J-C
    Colliander, A.
    Cosh, M.
    Crow, W.
    Dorigo, W.
    Draper, C.
    Hirschi, M.
    Kerr, Y.
    Konings, A.
    Lahoz, W.
    McColl, K.
    Montzka, C.
    Munoz-Sabater, J.
    Peng, J.
    Reichle, R.
    Richaume, P.
    Rudiger, C.
    Scanlon, T.
    van der Schalie, R.
    Wigneron, J-P
    Wagner, W.
    REMOTE SENSING OF ENVIRONMENT, 2020, 244 (244)