On the constants in the estimates of the rate of convergence in von Neumann's ergodic theorem

被引:7
|
作者
Kachurovskii, A. G. [1 ]
Sedalishchev, V. V. [2 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
von Neumann's ergodic theorem; ergodic mean; spectral measure; dynamical system; wide-sense stationary stochastic process; correlation coefficient; Darboux sum;
D O I
10.1134/S000143461005010X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rate of convergence in von Neumann's ergodic theorem. We obtain constants connecting the power rate of convergence of ergodic means and the power singularity at zero of the spectral measure of the corresponding dynamical system (these concepts are equivalent to each other). All the results of the paper have obvious exact analogs for wide-sense stationary stochastic processes.
引用
收藏
页码:720 / 727
页数:8
相关论文
共 50 条
  • [31] Asymptotically Exact Constants in Natural Convergence Rate Estimates in the Lindeberg Theorem
    Gabdullin, Ruslan
    Makarenko, Vladimir
    Shevtsova, Irina
    MATHEMATICS, 2021, 9 (05) : 1 - 32
  • [32] Fejer Sums for Periodic Measures and the von Neumann Ergodic Theorem
    Kachurovskii, A. G.
    Podvigin, I. V.
    DOKLADY MATHEMATICS, 2018, 98 (01) : 344 - 347
  • [33] A Multiplicative Ergodic Theorem for von Neumann Algebra Valued Cocycles
    Bowen, Lewis
    Hayes, Ben
    Lin, Yuqing Frank
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (02) : 1291 - 1350
  • [34] A Multiplicative Ergodic Theorem for von Neumann Algebra Valued Cocycles
    Lewis Bowen
    Ben Hayes
    Yuqing Frank Lin
    Communications in Mathematical Physics, 2021, 384 : 1291 - 1350
  • [35] von Neumann's mean ergodic theorem on complete random inner product modules
    Zhang, Xia
    Guo, Tiexin
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (05) : 965 - 985
  • [36] von Neumann’s mean ergodic theorem on complete random inner product modules
    Xia Zhang
    Tiexin Guo
    Frontiers of Mathematics in China, 2011, 6 : 965 - 985
  • [37] On the exponential rate of convergence in the Birkhoff ergodic theorem
    I. V. Podvigin
    Mathematical Notes, 2014, 95 : 573 - 576
  • [38] Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem
    Kachurovskii, A. G.
    Podvigin, I. V.
    MATHEMATICAL NOTES, 2019, 106 (1-2) : 52 - 62
  • [39] Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem
    A. G. Kachurovskii
    I. V. Podvigin
    Mathematical Notes, 2019, 106 : 52 - 62
  • [40] On the exponential rate of convergence in the Birkhoff ergodic theorem
    Podvigin, I. V.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 573 - 576