Theoretical and experimental investigation of the equation of state of boron plasmas

被引:26
|
作者
Zhang, Shuai [1 ]
Militzer, Burkhard [2 ,3 ]
Gregor, Michelle C. [1 ]
Caspersen, Kyle [1 ]
Yang, Lin H. [1 ]
Gaffney, Jim [1 ]
Ogitsu, Tadashi [1 ]
Swift, Damian [1 ]
Lazicki, Amy [1 ]
Erskine, D. [1 ]
London, Richard A. [1 ]
Celliers, P. M. [1 ]
Nilsen, Joseph [1 ]
Sterne, Philip A. [1 ]
Whitley, Heather D. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
TRANSPORT-COEFFICIENTS; STATISTICAL-MECHANICS; DENSE; SIMULATIONS; HYDROGEN; HOT; TEMPERATURE; PURGATORIO; CRYSTAL; MODEL;
D O I
10.1103/PhysRevE.98.023205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1 x 10(4) -5.2 x 10(8) K) and densities (0.25-49 g/cm(3)) and experimental shock Hugoniot data at unprecedented high pressures (5608 +/- 118 GPa). The calculations are performed with first-principles methods combining path-integral Monte Carlo (PIMC) at high temperatures and density-functional-theory molecular-dynamics (DFT-MD) methods at lower temperatures. PIMC and DFT-MD cross-validate each other by providing coherent EOS (difference <1.5 Hartree/boron in energy and <5% in pressure) at 5.1 x 10(5) K. The Hugoniot measurement is conducted at the National Ignition Facility using a planar shock platform. The pressure-density relation found in our shock experiment is on top of the shock Hugoniot profile predicted with our first-principles EOS and a semiempirical EOS table (LEOS 50). We investigate the self-diffusivity and the effect of thermal and pressure-driven ionization on the EOS and shock compression behavior in high-pressure and -temperature conditions. We also study the sensitivity of a polar direct-drive exploding pusher platform to pressure variations based on applying pressure multipliers to LEOS 50 and by utilizing a new EOS model based on our ab initio simulations via one-dimensional radiation-hydrodynamic calculations. The results are valuable for future theoretical and experimental studies and engineering design in high-energy density research.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Experimental and theoretical determination of temperature in plasmas
    Zmerli, Besma
    Ben Nessib, Nebil
    Dimitrijevic, Milan S.
    SPECTRAL LINE SHAPES IN ASTROPHYSICS, 2007, 938 : 245 - +
  • [22] EQUATION OF STATE AND SAHA EQUATION OF PARTIALLY IONIZED PLASMAS
    EBELING, W
    PHYSICA, 1968, 38 (03): : 378 - &
  • [23] Equation of state for magnetized Coulomb plasmas
    Potekhin, A. Y.
    Chabrier, G.
    ASTRONOMY & ASTROPHYSICS, 2013, 550
  • [24] Equation of state of strongly coupled plasmas
    Kraeft, WD
    Schlanges, M
    Kremp, D
    Riemann, J
    DeWitt, HE
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1998, 204 : 199 - 212
  • [25] Equation of state of high density plasmas
    Vorberger, J
    Schlanges, M
    Gericke, DO
    Kraeft, WD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (17): : 4707 - 4710
  • [26] EQUATION OF STATE OF GASEOUS METALLIC PLASMAS
    VILLARS, DS
    PHYSICS OF FLUIDS, 1963, 6 (05) : 745 - 748
  • [27] Structure and equation of state of metallic plasmas
    Amato, MA
    March, NH
    LASER AND PARTICLE BEAMS, 1996, 14 (04) : 685 - 697
  • [28] EQUATION OF STATE FOR MULTICOMPONENT CLASSICAL PLASMAS
    ROSENFELD, Y
    PHYSICAL REVIEW A, 1982, 26 (06): : 3622 - 3632
  • [29] EQUATION OF STATE FOR WEAKLY NONIDEAL PLASMAS
    SCHLANGES, M
    KRAEFT, WD
    DEWITT, H
    CONTRIBUTIONS TO PLASMA PHYSICS, 1993, 33 (5-6) : 437 - 440
  • [30] Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas
    Min, Qi
    Su, Maogen
    Wang, Bo
    Cao, Shiquan
    Sun, Duixiong
    Dong, Chenzhong
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 210 : 189 - 196