Mixed finite element methods for generalized forchheimer flow in porous media

被引:79
|
作者
Park, EJ [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
non-Darcy flow; Forchheimer's law; mixed methods; error estimates;
D O I
10.1002/num.20035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mixed finite element methods are analyzed for the approximation of the solution of the system of equations that describes the flow of a single-phase fluid in a porous medium in R-d, d less than or equal to 3, subject to Forchhheimer's law-a nonlinear form of Darcy's law. Existence and uniqueness of the approximation are proved, and optimal order error estimates in L-infinity(J; L-2(Omega)) and in Linfinity(J; H(div; Omega)) are demonstrated for the pressure and momentum, respectively. Error estimates are also derived in L-infinity(J; L-infinity(Omega)) for the pressure. (C) 2004 Wiley Periodicals. Inc.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 50 条
  • [31] Dual variable methods for mixed-hybrid finite element approximation of the potential fluid flow problem in porous media
    Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
    不详
    不详
    Electron. Trans. Numer. Anal., 2006, (17-40):
  • [32] Dual variable methods for mixed-hybrid finite element approximation of the potential fluid flow problem in porous media
    Arioli, M
    Maryska, J
    Rozlozník, M
    Tuma, M
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 22 : 17 - 40
  • [33] An Expanded Mixed Finite Element Method for Space Fractional Darcy Flow in Porous Media
    Chen, Huangxin
    Sun, Shuyu
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 : 205 - 216
  • [34] Implementation of mixed methods as finite difference methods and applications to nonisothermal multiphase flow in porous media
    Chen, Zhang-xin
    Yu, Xi-jun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 281 - 294
  • [35] MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND APPLICATIONS
    Chung, Eric T.
    Efendiev, Yalchin
    Lee, Chak Shing
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 338 - 366
  • [36] Multiscale-stabilized finite element methods for miscible and immiscible flow in porous media
    Juanes, R
    Patzek, TW
    JOURNAL OF HYDRAULIC RESEARCH, 2004, 42 : 131 - 140
  • [37] Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous media
    Arraras, A.
    Gaspar, F. J.
    Portero, L.
    Rodrigo, C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (09) : 3139 - 3151
  • [38] Generalized Multiscale Finite Element method for multicontinua unsaturated flow problems in fractured porous media
    Spiridonov, Denis
    Vasilyeva, Maria
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
  • [39] MIXED METHODS WITH DYNAMIC FINITE-ELEMENT SPACES FOR MISCIBLE DISPLACEMENT IN POROUS-MEDIA
    YANG, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (03) : 313 - 328
  • [40] New Mixed Finite Element Methods for Natural Convection with Phase-Change in Porous Media
    Mario Alvarez
    Gabriel N. Gatica
    Bryan Gomez-Vargas
    Ricardo Ruiz-Baier
    Journal of Scientific Computing, 2019, 80 : 141 - 174