Sorting stably, in place, with O (n log n) comparisons and O(n) moves

被引:2
|
作者
Franceschini, Gianni [1 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56127 Pisa, Italy
关键词
D O I
10.1007/s00224-006-1311-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We settle a long-standing open question, namely whether it is possible to sort a sequence of n elements stably (i.e., preserving the original relative order of the equal elements), using O(1) auxiliary space and performing O(n log n) comparisons and O(n) data moves. Munro and Raman stated this problem in J. Algorithms (13, 1992) and gave an in-place but unstable sorting algorithm that performs O(n) data moves and O(n(1+epsilon)) comparisons. Subsequently (Algorithmica, 16, 1996) they presented a stable algorithm with these same bounds. Recently, Franceschini and Geffert (FOCS 2003) presented an unstable sorting algorithm that matches the asymptotic lower bounds on all computational resources.
引用
收藏
页码:327 / 353
页数:27
相关论文
共 50 条
  • [21] INSERTION SORT is O(n log n)
    Bender, MA
    Farach-Colton, M
    Mosteiro, MA
    THEORY OF COMPUTING SYSTEMS, 2006, 39 (03) : 391 - 397
  • [22] Insertion Sort is O(n log n)
    Michael A. Bender
    Martin Farach-Colton
    Miguel A. Mosteiro
    Theory of Computing Systems, 2006, 39 : 391 - 397
  • [23] Sorting Real Numbers in O(n √log n) Time and Linear Space (January, 2019)
    Han, Yijie
    ALGORITHMICA, 2019,
  • [24] The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time
    Firoz, Jesun Sahariar
    Hasan, Masud
    Khan, Ashik Zinnat
    Rahman, M. Sohel
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (08) : 1007 - 1011
  • [25] The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time
    Firoz, Jesun S.
    Hasan, Masud
    Khan, Ashik Z.
    Rahman, M. Sohel
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 161 - 166
  • [26] BOUNDED ORDERED DICTIONARIES IN O(LOG LOG N) TIME AND O(N) SPACE
    MEHLHORN, K
    NAHER, S
    INFORMATION PROCESSING LETTERS, 1990, 35 (04) : 183 - 189
  • [27] O(N log N) multilevel calculation of N eigenfunctions
    Livine, OE
    Brandt, A
    MULTISCALE COMPUTATIONAL METHODS IN CHEMISTRY AND PHYSICS, 2001, 177 : 112 - 136
  • [28] A MINIMUM AREA VLSI NETWORK FOR O(LOG N) TIME SORTING
    BILARDI, G
    PREPARATA, FP
    IEEE TRANSACTIONS ON COMPUTERS, 1985, 34 (04) : 336 - 343
  • [29] Randomized Mutual Exclusion in O(log N/log log N) RMRs
    Hendler, Danny
    Woelfel, Philipp
    PODC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2009, : 26 - 35
  • [30] A O(n log2 n) Checker and O(n2 log n) Filtering Algorithm for the Energetic Reasoning
    Ouellet, Yanick
    Quimper, Claude-Guy
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2018, 2018, 10848 : 477 - 494