Sorting stably, in place, with O (n log n) comparisons and O(n) moves

被引:2
|
作者
Franceschini, Gianni [1 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56127 Pisa, Italy
关键词
D O I
10.1007/s00224-006-1311-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We settle a long-standing open question, namely whether it is possible to sort a sequence of n elements stably (i.e., preserving the original relative order of the equal elements), using O(1) auxiliary space and performing O(n log n) comparisons and O(n) data moves. Munro and Raman stated this problem in J. Algorithms (13, 1992) and gave an in-place but unstable sorting algorithm that performs O(n) data moves and O(n(1+epsilon)) comparisons. Subsequently (Algorithmica, 16, 1996) they presented a stable algorithm with these same bounds. Recently, Franceschini and Geffert (FOCS 2003) presented an unstable sorting algorithm that matches the asymptotic lower bounds on all computational resources.
引用
收藏
页码:327 / 353
页数:27
相关论文
共 50 条
  • [1] Sorting Stably, in Place, with O(n log n) Comparisons and O(n) Moves
    Gianni Franceschini
    Theory of Computing Systems, 2007, 40 : 327 - 353
  • [2] Sorting stably, in-place, with O(n log n) comparisons and O(n) moves
    Franceschini, G
    STACS 2005, PROCEEDINGS, 2005, 3404 : 629 - 640
  • [3] An in-place sorting with O (n log n) comparisons and O(n) moves
    Franceschini, G
    Geffert, V
    JOURNAL OF THE ACM, 2005, 52 (04) : 515 - 537
  • [4] An in-place sorting with O (n log n) comparisons and O (n) Moves
    Franceschini, G
    Geffert, V
    44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, : 242 - 250
  • [5] A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves
    Mahmoud, Hanan Ahmed-Hosni
    Al-Ghreimil, Nadia
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 16, 2006, 16 : 239 - 244
  • [6] FAST STABLE IN-PLACE SORTING WITH O(N) DATA MOVES
    MUNRO, JI
    RAMAN, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 560 : 266 - 277
  • [7] Fast stable in-place sorting with O(n) data moves
    Munro, JI
    Raman, V
    ALGORITHMICA, 1996, 16 (02) : 151 - 160
  • [8] Deterministic sorting in O (n log log n) time and linear space
    Han, YJ
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2004, 50 (01): : 96 - 105
  • [9] Sorting Signed Permutations by Inversions in O(n log n) Time
    Swenson, Krister M.
    Rajan, Vaibhav
    Lin, Yu
    Moret, Bernard M. E.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2009, 5541 : 386 - +
  • [10] SORTING SHORT KEYS IN CIRCUITS OF SIZE o(n log n)
    Asharov, Gilad
    Lin, Wei-Kai
    Shi, Elaine
    SIAM JOURNAL ON COMPUTING, 2022, 51 (03) : 424 - 466