Tracing ions in the cusp and low-latitude boundary layer using multispacecraft observations and a global MHD simulation

被引:20
|
作者
Fuselier, SA [1 ]
Berchem, J
Trattner, KJ
Friedel, R
机构
[1] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
magnetic reconnection; particle precipitation; charged particle motion;
D O I
10.1029/2001JA000130
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[1] High-latitude observations from the Polar spacecraft on 21 January 1998 show a region of closed magnetic field lines containing several distinct solar wind ion populations in the energy range from <10 eV to >200 keV e(-1). Precipitating ion fluxes in this region are consistent with the low-latitude boundary layer (LLBL). A global MHD simulation of this event (using input from the Wind spacecraft upstream from the Earth's bow shock) reproduces Geotail and Interball/Tail spacecraft observations in the outer magnetosphere and magnetosheath. These results demonstrate that the simulation faithfully reproduces the global magnetic field configuration of the magnetosheath and magnetosphere and provides confidence for the interpretation of the LLBL observations from Polar. Results from the simulation show that a single evolutionary process of plasma entry into the cusp and evolution to the LLBL can account for the development of a multi-energy ion population of solar wind origin on closed magnetic field lines in the magnetosphere. Sources with direct access to the ultimately closed LLBL field lines observed by Polar are the dayside magnetosheath (low-energy ions below 3 keV e(-1)), the quasi-parallel bow shock (higher-energy ions between 3 and 100 keVe(-1)), and possibly the duskside magnetopause (highest-energy ions above 100 keV e(-1)).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effects of the low-latitude ionospheric boundary condition on the global magnetosphere
    Merkin, V. G.
    Lyon, J. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [32] Cusp observations of high- and low-latitude reconnection for northward interplanetary magnetic field
    Fuselier, SA
    Trattner, KJ
    Petrinec, SM
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A1) : 253 - 266
  • [33] Cusp observations of high- and low-latitude reconnection for northward IMF: An alternate view
    Russell, CT
    Le, G
    Petrinec, SM
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A3) : 5489 - 5495
  • [34] Structure of the low-latitude boundary layer: A case study with Geotail data
    Fujimoto, M
    Mukai, T
    Kawano, H
    Nakamura, M
    Nishida, A
    Saito, Y
    Yamamoto, T
    Kokubun, S
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A2): : 2297 - 2308
  • [35] SELF-CONSISTENT MODEL OF THE LOW-LATITUDE BOUNDARY-LAYER
    PHAN, TD
    SONNERUP, BUO
    LOTKO, W
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A2): : 1281 - 1293
  • [36] The low-latitude boundary layer: Application of ISTP advances to past data
    Lockwood, M
    Hapgood, MA
    SUN-EARTH PLASMA CONNECTIONS, 1999, 109 : 103 - 111
  • [37] Kelvin-Helmholtz Instability in the Geotail Low-Latitude Boundary Layer
    Leonovich, A. S.
    Kozlov, D. A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (08) : 6548 - 6561
  • [38] Determining the thickness of the low-latitude boundary layer in the Earth's magnetosphere
    Znatkova, S. S.
    Antonova, E. E.
    Pulinets, M. S.
    Kirpichev, I. P.
    GEOMAGNETISM AND AERONOMY, 2013, 53 (06) : 699 - 710
  • [39] Determining the thickness of the low-latitude boundary layer in the Earth’s magnetosphere
    S. S. Znatkova
    E. E. Antonova
    M. S. Pulinets
    I. P. Kirpichev
    Geomagnetism and Aeronomy, 2013, 53 : 699 - 710