AN IMPROVED MULTI-LABEL CLASSIFICATION METHOD BASED ON SVM WITH DELICATE DECISION BOUNDARY

被引:0
|
作者
Chen, Benhui [1 ]
Ma, Liangpeng [1 ]
Hu, Jinglu [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Wakamatsu Ku, Kitakyushu, Fukuoka 8080135, Japan
关键词
Multi-label classification; Support vector machine; Probabilistic outputs of SVM; Delicate decision boundary; SUPPORT VECTOR MACHINE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification problem is an extension of traditional multi-class classification problem in which the classes are not mutually exclusive and each sample may belong to several classes simultaneously. Such problems occur in many important applications. Some researches indicate that the performance of classifier can be improved by introducing the information of multi-label training samples into learning procedure effectively. In this paper, we propose a novel method based on SVM with delicate decision boundary. For the basic overlapping problem of two labels, characteristics of double-label samples are utilized to obtain the range of overlapping sample space decided by two binary SVM classifier separating surfaces. And a bias model with delicate decision boundary is built for samples in overlapping sample space to improve the classification accuracy. Experimental results on the benchmark datasets of Yeast and Scene show that our proposed method improves the classification accuracy efficiently, compared with the basic binary SVM method and some existing well-known methods.
引用
收藏
页码:1605 / 1614
页数:10
相关论文
共 50 条
  • [41] A Scalable Clustering-Based Local Multi-Label Classification Method
    Sun, Lu
    Kudo, Mineichi
    Kimura, Keigo
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 261 - 268
  • [42] Multi-label Classification Based on Domain Analysis in Fixed Point Method
    Berger, Anna
    Guda, Sergey
    PROCEEDINGS OF THE 28TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION FRUCT, 2021, : 28 - 34
  • [43] A Multi-Label Text Classification Method Based on Labels Vector Fusion
    Tao, Yang
    Cui, Zhu
    Zhu Wenjun
    2018 INTERNATIONAL CONFERENCE ON PROMISING ELECTRONIC TECHNOLOGIES (ICPET 2018), 2018, : 80 - 85
  • [44] A deep neural network based hierarchical multi-label classification method
    Feng, Shou
    Zhao, Chunhui
    Fu, Ping
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (02):
  • [45] Text Classification Based on a Novel Ensemble Multi-Label Learning Method
    Zhang, Tao
    Wu, Jiansheng
    Hu, Haifeng
    2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 964 - 968
  • [46] Multi-label Text Classification Based on Improved Seq2Seq
    Chen, Xiaolong
    Cheng, Jieren
    Rong, Zhixin
    Xu, Wenghang
    Hua, Shuai
    Tang, Zhu
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 439 - 446
  • [47] Boosting-based Multi-label Classification
    Kajdanowicz, Tomasz
    Kazienko, Przemyslaw
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2013, 19 (04) : 502 - 520
  • [48] Multi-label Anomaly Classification Based on Electrocardiogram
    Li, Chenyang
    Sun, Le
    HEALTH INFORMATION SCIENCE, HIS 2021, 2021, 13079 : 171 - 178
  • [49] Biclustering-based multi-label classification
    Schmitke, Luiz Rafael
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4861 - 4898
  • [50] Topic Model Based Multi-Label Classification
    Padmanabhan, Divya
    Bhat, Satyanath
    Shevade, Shirish
    Narahari, Y.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 996 - 1003