Measurement of the quantum-confined Stark effect in InAs/In(Ga)As quantum dots with p-doped quantum dot barriers

被引:3
|
作者
Mahoney, Joe [1 ]
Tang, Mingchu [2 ]
Liu, Huiyun [2 ]
Abadia, Nicolas [1 ,3 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
[2] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[3] Cardiff Univ, Inst Compound Semicond, Cardiff CF24 3AA, Wales
来源
OPTICS EXPRESS | 2022年 / 30卷 / 11期
基金
英国工程与自然科学研究理事会;
关键词
ELECTROABSORPTION MODULATOR; CONSUMPTION;
D O I
10.1364/OE.455491
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum-confined Stark effect in InAs/In(Ga)As quantum dots (QDs) using non-intentionally doped and p-doped QD barriers was investigated to compare their performance for use in optical modulators. The measurements indicate that the doped QD barriers lead to a better figure of merit (FoM), defined as the ratio of the change in absorption Delta alpha for a reverse bias voltage swing to the loss at 1 V alpha(1 V), FoM=Delta alpha/alpha (1 V). The improved performance is due to the absence of the ground-state absorption peak and an additional component to the Stark shift. Measurements indicate that p-doping the QD barriers can lead to more than a 3x increase in FoM modulator performance between temperatures of -73 degrees C to 100 degrees C when compared with the stack with NID QD barriers.
引用
收藏
页码:17730 / 17738
页数:9
相关论文
共 50 条
  • [41] Quantum-confined stark effects in semiconductor quantum disks
    Susa, N
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (10) : 1760 - 1766
  • [42] The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots
    Li, Jialu
    Wang, Dengfeng
    Zhang, Guofeng
    Yang, Changgang
    Guo, Wenli
    Han, Xue
    Bai, Xiuqing
    Chen, Ruiyun
    Qin, Chengbing
    Hu, Jianyong
    Xiao, Liantuan
    Jia, Suotang
    NANO RESEARCH, 2022, 15 (08) : 7655 - 7661
  • [43] The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots
    Jialu Li
    Dengfeng Wang
    Guofeng Zhang
    Changgang Yang
    Wenli Guo
    Xue Han
    Xiuqing Bai
    Ruiyun Chen
    Chengbing Qin
    Jianyong Hu
    Liantuan Xiao
    Suotang Jia
    Nano Research, 2022, 15 (8) : 7655 - 7661
  • [44] Manipulating quantum-confined Stark shift in electroluminescence from quantum dots with side gates
    Xu, Xiulai
    Andreev, Aleksey
    Williams, David A.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [45] Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology
    Kuo, Yung
    Li, Jack
    Michalet, Xavier
    Chizhik, Alexey
    Meir, Noga
    Bar-Elli, Omri
    Chan, Emory
    Oron, Dan
    Enderlein, Joerg
    Weiss, Shimon
    ACS PHOTONICS, 2018, 5 (12): : 4788 - 4800
  • [46] Quantum-confined Stark effect in InGaN pyramidal dots induced by the piezoelectric field
    Saito, T
    Arakawa, Y
    COMPOUND SEMICONDUCTORS 2001, 2002, (170): : 555 - 560
  • [47] Radiative lifetimes in undoped and p-doped InAs/GaAs quantum dots
    Harbord, Edmund
    Spencer, Peter
    Clarke, Edmund
    Murray, Ray
    PHYSICAL REVIEW B, 2009, 80 (19)
  • [48] Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined stark effect and electroabsorption
    S. Yu. Kruchinin
    A. V. Fedorov
    Physics of the Solid State, 2007, 49 : 968 - 975
  • [49] Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0001)
    Takeuchi, T
    Sota, S
    Sakai, H
    Amanoa, H
    Akasaki, I
    Kaneko, Y
    Nakagawa, S
    Yamaoka, Y
    Yamada, N
    JOURNAL OF CRYSTAL GROWTH, 1998, 189 : 616 - 620
  • [50] OPTICAL QUANTUM-CONFINED STARK-EFFECT IN GAAS QUANTUM-WELLS
    FROHLICH, D
    WILLE, R
    SCHLAPP, W
    WEIMANN, G
    PHYSICAL REVIEW LETTERS, 1987, 59 (15) : 1748 - 1751