Using a neural network approach for muon reconstruction and triggering

被引:0
|
作者
Etzion, E [1 ]
Abramowicz, H
Benhammou, Y
Dror, G
Horn, D
Levinson, L
Livneh, R
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[2] Acad Coll Tel Aviv Yaffo, Dept Comp Sci, IL-64044 Tel Aviv, Israel
[3] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel
关键词
HEP; trigger; neural network;
D O I
10.1016/j.nima.2004.07.091
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The extremely high rate of events that will be produced in the future Large Hadron Collider requires the triggering mechanism to take precise decisions in a few nano-seconds. We present a study which used an artificial neural network triggering algorithm and compared it to the performance of a dedicated electronic muon triggering system. Relatively simple architecture was used to solve a complicated inverse problem. A comparison with a realistic example of the ATLAS first level trigger simulation was in favour of the neural network. A similar architecture trained after the simulation of the electronics first trigger stage showed a further background rejection. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 50 条
  • [21] A FAST PROCESSOR FOR MUON TRIGGERING USING RESISTIVE PLATE CHAMBERS
    GENNARI, E
    PETROLO, E
    VENEZIANO, S
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1992, 39 (04) : 821 - 825
  • [22] Neural network computations with negative triggering thresholds
    Gopych, P
    [J]. ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 223 - 228
  • [24] A novel approach to image reconstruction from discrete projections using Hopfield-type neural network
    Cierniak, Robert
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 890 - 898
  • [25] Compressed-Sensing Magnetic Resonance Image Reconstruction Using an Iterative Convolutional Neural Network Approach
    Hashimoto, Fumio
    Ote, Kibo
    Oida, Takenori
    Teramoto, Atsushi
    Ouchi, Yasuomi
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [26] Shot-gather Reconstruction using a Deep Data Prior-based Neural Network Approach
    Rodriguez-Lopez, Luis
    Leon-Lopez, Kareth
    Goyes-Penafiel, Paul
    Galvis, Laura
    Arguello, Henry
    [J]. UIS INGENIERIAS, 2023, 22 (03): : 177 - 187
  • [27] PCG Classification using a Neural Network Approach
    Grzegorczyk, Iga
    Solinski, Mateusz
    Lepek, Michal
    Perka, Anna
    Rosinski, Jacek
    Rymko, Joanna
    Stepien, Katarzyna
    Gieraltowski, Jan
    [J]. 2016 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 43, 2016, 43 : 1129 - 1132
  • [28] Approach to combustion calculation using neural network
    Nikitin, V. F.
    Karandashev, I. M.
    Malsagov, M. Yu
    Mikhalchenko, E. V.
    [J]. ACTA ASTRONAUTICA, 2022, 194 : 376 - 382
  • [29] Estimation of evapotranspiration using neural network approach
    Khedkar, D. D.
    Singh, P. K.
    Bhakar, S. R.
    [J]. JOURNAL OF AGROMETEOROLOGY, 2019, 21 (02): : 233 - 235
  • [30] Segments matching using a neural network approach
    Djekoune, OA
    Achour, K
    Zoubiri, H
    [J]. ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2001, : 103 - 105