Pure-state informationally complete and "really" complete measurements

被引:56
|
作者
Finkelstein, J [1 ]
机构
[1] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 05期
关键词
D O I
10.1103/PhysRevA.70.052107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
I construct a positive-operator-valued measure (POVM) which has 2d rank-1 elements and which is informationally complete for generic pure states in d dimensions, thus confirming a conjecture made by Flammia, Silberfarb, and Caves (e-print quant-ph/0404137). I show that if a rank-1 POVM is required to be informationally complete for all pure states in d dimensions, it must have at least 3d-2 elements. I also show that, in a POVM which is informationally complete for all pure states in d dimensions, for any vector there must be at least 2d-1 POVM elements which do not annihilate that vector.
引用
收藏
页码:052107 / 1
页数:3
相关论文
共 50 条
  • [31] Informationally complete measurements on bipartite quantum systems: Comparing local with global measurements
    D'Ariano, GM
    Perinotti, P
    Sacchi, MF
    PHYSICAL REVIEW A, 2005, 72 (04):
  • [32] Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments
    Tavakoli, Armin
    Farkas, Mate
    Rosset, Denis
    Bancal, Jean-Daniel
    Kaniewski, Jedrzej
    SCIENCE ADVANCES, 2021, 7 (07)
  • [33] Constructing exact symmetric informationally complete measurements from numerical solutions
    Appleby, Marcus
    Chien, Tuan-Yow
    Flammia, Steven
    Waldron, Shayne
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (16)
  • [34] Schmidt number criterion via general symmetric informationally complete measurements
    Wang, Zhen
    Sun, Bao-Zhi
    Fei, Shao-Ming
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)
  • [35] Tomographic and Lie algebraic significance of generalized symmetric informationally complete measurements
    Zhu, Huangjun
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [36] The entanglement criteria via a broad class of symmetric informationally complete measurements
    Tang, Liang
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [37] Learning to Measure: Adaptive Informationally Complete Generalized Measurements for Quantum Algorithms
    Garcia-Perez, Guillermo
    Rossi, Matteo A. C.
    Sokolov, Boris
    Tacchino, Francesco
    Barkoutsos, Panagiotis Kl
    Mazzola, Guglielmo
    Tavernelli, Ivano
    Maniscalco, Sabrina
    PRX QUANTUM, 2021, 2 (04):
  • [38] The entanglement criteria via a broad class of symmetric informationally complete measurements
    Liang Tang
    Quantum Information Processing, 22
  • [39] Compounds of symmetric informationally complete measurements and their application in quantum key distribution
    Tavakoli, Armin
    Bengtsson, Ingemar
    Gisin, Nicolas
    Renes, Joseph M.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [40] Quantum state tomography with informationally complete POVMs generated in the time domain
    Czerwinski, Artur
    QUANTUM INFORMATION PROCESSING, 2021, 20 (03)