expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform

被引:297
|
作者
Borrill, Philippa [1 ]
Ramirez-Gonzalez, Ricardo [2 ]
Uauy, Cristobal [1 ]
机构
[1] John Innes Ctr, Norwich NR4 7UH, Norfolk, England
[2] Genome Anal Ctr, Norwich NR4 7UH, Norfolk, England
基金
英国生物技术与生命科学研究理事会;
关键词
GENE-EXPRESSION; TRANSCRIPTION FACTORS; RESPONSIVE GENES; STRIPE RUST; WHEAT; REVEALS; RESOURCES; GENOMICS; RESISTANCE; SELECTION;
D O I
10.1104/pp.15.01667
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The majority of transcriptome sequencing (RNA-seq) expression studies in plants remain underutilized and inaccessible due to the use of disparate transcriptome references and the lack of skills and resources to analyze and visualize these data. We have developed expVIP, an expression visualization and integration platform, which allows easy analysis of RNA-seq data combined with an intuitive and interactive interface. Users can analyze public and user-specified data sets with minimal bioinformatics knowledge using the expVIP virtual machine. This generates a custom Web browser to visualize, sort, and filter the RNA-seq data and provides outputs for differential gene expression analysis. We demonstrate expVIP's suitability for polyploid crops and evaluate its performance across a range of biologically relevant scenarios. To exemplify its use in crop research, we developed a flexible wheat (Triticum aestivum) expression browser (www.wheat-expression.com) that can be expanded with user-generated data in a local virtual machine environment. The open-access expVIP platform will facilitate the analysis of gene expression data from a wide variety of species by enabling the easy integration, visualization, and comparison of RNA-seq data across experiments.
引用
收藏
页码:2172 / 2186
页数:15
相关论文
共 50 条
  • [21] A Comprehensive Review on RNA-seq Data Analysis
    Zhang Li
    Liu Xuejun
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (03) : 339 - 361
  • [22] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    [J]. 2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [23] Quantitative visualization of alternative exon expression from RNA-seq data
    Katz, Yarden
    Wang, Eric T.
    Silterra, Jacob
    Schwartz, Schraga
    Wong, Bang
    Thorvaldsdottir, Helga
    Robinson, James T.
    Mesirov, Jill P.
    Airoldi, Edoardo M.
    Burge, Christopher B.
    [J]. BIOINFORMATICS, 2015, 31 (14) : 2400 - 2402
  • [24] scBubbletree: computational approach for visualization of single cell RNA-seq data
    Kitanovski, Simo
    Cao, Yingying
    Ttoouli, Dimitris
    Farahpour, Farnoush
    Wang, Jun
    Hoffmann, Daniel
    [J]. BMC BIOINFORMATICS, 2024, 25 (01):
  • [25] A Tool for Visualization and Analysis of Single-Cell RNA-Seq Data Based on Text Mining
    Gambardella, Gennaro
    di Bernardo, Diego
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [26] SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts
    Ryan, Michael C.
    Cleland, James
    Kim, RyangGuk
    Wong, Wing Chung
    Weinstein, John N.
    [J]. BIOINFORMATICS, 2012, 28 (18) : 2385 - 2387
  • [27] Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data
    Ghosh, Debashis
    Qin, Zhaohui S.
    [J]. GENES, 2010, 1 (02) : 317 - 334
  • [28] Oqtans: a multifunctional workbench for RNA-seq data analysis
    Sreedharan, Vipin T.
    Schultheiss, Sebastian J.
    Jean, Geraldine
    Kahles, Andre
    Bohnert, Regina
    Drewe, Philipp
    Mudrakarta, Pramod
    Goernitz, Nico
    Zeller, Georg
    Raetsch, Gunnar
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [29] aTAP: automated transcriptome analysis platform for processing RNA-seq data by de novo assembly
    Surachat, Komwit
    Taylor, Todd Duane
    Wattanamatiphot, Wanicbut
    Sukpisit, Sukgamon
    Jeenkeawpiam, Kongpop
    [J]. HELIYON, 2022, 8 (08)
  • [30] Improving the Flexibility of RNA-Seq Data Analysis Pipelines
    Phan, John H.
    Wu, Po-Yen
    Wang, May D.
    [J]. 2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 70 - 73