Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

被引:185
|
作者
Fu, P. Q. [1 ]
Kawamura, K. [1 ]
Pavuluri, C. M. [1 ]
Swaminathan, T. [2 ]
Chen, J. [1 ,3 ,4 ]
机构
[1] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
[2] Indian Inst Technol, Dept Chem Engn, Madras 600036, Tamil Nadu, India
[3] Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China
[4] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
日本学术振兴会;
关键词
AIR-POLLUTION SOURCES; DUTY DIESEL TRUCKS; DICARBOXYLIC-ACIDS; ATMOSPHERIC AEROSOLS; OXIDATION-PRODUCTS; MASS-SPECTROMETRY; BROWN CLOUDS; SOUTH-ASIA; GAS-PHASE; CARBONACEOUS AEROSOLS;
D O I
10.5194/acp-10-2663-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compounds (VOCs). At daytime, phthalate esters were found to be the most abundant compound class; however, at nighttime, fatty acids were the dominant one. Di-(2-ethylhexyl) phthalate, C-16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. However, biogenic VOC oxidation products (e.g., 2-methyltetrols, pinic acid, 3-hydroxyglutaric acid and beta-caryophyllinic acid) showed diurnal patterns with daytime maxima. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive relation was found between 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that the field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. Organic compounds were further categorized into several groups to clarify their sources. Fossil fuel combustion (24-43%) was recognized as the most significant source for the total identified compounds, followed by plastic emission (16-33%), secondary oxidation (8.6-23%), and microbial/marine sources (7.2-17%). In contrast, the contributions of terrestrial plant waxes (5.9-11%) and biomass burning (4.2-6.4%) were relatively small. This study demonstrates that, in addition to fossil fuel combustion and biomass burning, the open-burning of plastics in urban area also contributes to the organic aerosols in South Asia.
引用
收藏
页码:2663 / 2689
页数:27
相关论文
共 50 条
  • [21] Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol
    Tomaz, Sophie
    Cui, Tianqu
    Chen, Yuzhi
    Sexton, Kenneth G.
    Roberts, James M.
    Warneke, Carsten
    Yokelson, Robert J.
    Surratt, Jason D.
    Turpin, Barbara J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (19) : 11027 - 11037
  • [23] Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol
    Xu, Weiqi
    He, Yao
    Qiu, Yanmei
    Chen, Chun
    Xie, Conghui
    Lei, Lu
    Li, Zhijie
    Sun, Jiaxing
    Li, Junyao
    Fu, Pingqing
    Wang, Zifa
    Worsnop, Douglas
    Sun, Yele
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (06) : 3205 - 3219
  • [24] Aqueous phase processing of secondary organic aerosol from isoprene photooxidation
    Liu, Y.
    Monod, A.
    Tritscher, T.
    Praplan, A. P.
    DeCarlo, P. F.
    Temime-Roussel, B.
    Quivet, E.
    Marchand, N.
    Dommen, J.
    Baltensperger, U.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (13) : 5879 - 5895
  • [25] Hydroxydicarboxylic acids:: Markers for secondary organic aerosol from the photooxidation of α-pinene
    Claeys, Magda
    Szmigielski, Rafal
    Kourtchev, Ivan
    Van der Veken, Pieter
    Vermeylen, Reinhilde
    Maenhaut, Willy
    Jaoui, Mohammed
    Kleindienst, Tadeusz E.
    Lewandowski, Michael
    Offenberg, John H.
    Edney, Edward O.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (05) : 1628 - 1634
  • [26] Size distribution of the secondary organic aerosol particles from the photooxidation of toluene
    Hao, LQ
    Wang, ZY
    Huang, MQ
    Pei, SX
    Yang, Y
    Zhang, WJ
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2005, 17 (06) : 912 - 916
  • [27] Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements
    Lambe, A. T.
    Ahern, A. T.
    Williams, L. R.
    Slowik, J. G.
    Wong, J. P. S.
    Abbatt, J. P. D.
    Brune, W. H.
    Ng, N. L.
    Wright, J. P.
    Croasdale, D. R.
    Worsnop, D. R.
    Davidovits, P.
    Onasch, T. B.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (03) : 445 - 461
  • [28] Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation
    Giorio, Chiara
    Monod, Anne
    Bregonzio-Rozier, Lola
    DeWitt, Helen Langley
    Cazaunau, Mathieu
    Temime-Roussel, Brice
    Gratien, Aline
    Michoud, Vincent
    Pangui, Edouard
    Ravier, Sylvain
    Zielinski, Arthur T.
    Tapparo, Andrea
    Vermeylen, Reinhilde
    Claeys, Magda
    Voisin, Didier
    Kalberer, Markus
    Doussin, Jean-Francois
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (40): : 7641 - 7654
  • [29] Effects of NOx on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation
    Xu, Lu
    Kollman, Matthew S.
    Song, Chen
    Shilling, John E.
    Ng, Nga L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (04) : 2253 - 2262
  • [30] Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene
    Surratt, Jason D.
    Murphy, Shane M.
    Kroll, Jesse H.
    Ng, a L. Ng
    Hildebrandt, Lea
    Sorooshian, Armin
    Szmigielski, Rafal
    Vermeylen, Reinhilde
    Maenhaut, Willy
    Claeys, Magda
    Flagan, Richard C.
    Seinfeld, John H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (31): : 9665 - 9690