Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

被引:37
|
作者
Denis, Elizabeth H. [1 ,6 ]
Pedentchouk, Nikolai [2 ]
Schouten, Stefan [3 ,4 ]
Pagani, Mark [5 ]
Freeman, Katherine H. [1 ]
机构
[1] Penn State Univ, Dept Geosci, Deike Bldg, University Pk, PA 16802 USA
[2] Univ East Anglia, Sch Environm Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[3] Royal Netherlands Inst Sea Res NIOZ, Dept Marine Microbiol & Biogeochem, POB 59, NL-1790 AB Den Burg, Texel, Netherlands
[4] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[5] Yale Univ, Dept Geol & Geophys, POB 208109, New Haven, CT 06520 USA
[6] Pacific Northwest Natl Lab, Chem & Biol Signature Sci, POB 999,MSIN P7-50,902 Bataille Blvd, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
Paleocene-Eocene Thermal Maximum (PETM); polycyclic aromatic hydrocarbon (PAH); fire; angiosperms; organic carbon; Arctic; POLYCYCLIC AROMATIC-HYDROCARBONS; ORGANIC-MATTER; SEDIMENTS; CARBON; CLIMATE; BEHAVIOR; RECORDS; FOREST; LIPIDS; SOILS;
D O I
10.1016/j.epsl.2017.03.021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fire has been an important component of ecosystems on a range of spatial and temporal scales. Fire can affect vegetation distribution, the carbon cycle, and climate. The relationship between climate and fire is complex, in large part because of a key role of vegetation type. Here, we evaluate regional scale fire-climate relationships during a past global warming event, the Paleocene-Eocene Thermal Maximum (PETM), in order to understand how vegetation influenced the links between climate and fire occurrence in the Arctic region. To document concurrent changes in climate, vegetation, and fire occurrence, we evaluated biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes, from the PETM interval at a marine depositional site (IODP site 302, the Lomonosov Ridge) in the Arctic Ocean. Biomarker, fossil, and isotope evidence from site 302 indicates that terrestrial vegetation changed during the PETM. The abundance of the C-29 n-alkanes, pollen, and the ratio of leaf-wax n-alkanes relative to diterpenoids all indicate that proportional contributions from angiosperm vegetation increased relative to that from gymnosperms. These changes accompanied increased moisture transport to the Arctic and higher temperatures, as recorded by previously published proxy records. We find that PAH abundances were elevated relative to total plant biomarkers throughout the PETM, and suggest that fire occurrence increased relative to plant productivity. The fact that fire frequency or prevalence may have increased during wetter Arctic conditions suggests that changes in fire occurrence were not a simple function of aridity, as is commonly conceived. Instead, we suggest that the climate-driven ecological shift to angiosperm-dominated vegetation was what led to increased fire occurrence. Potential increases in terrestrial plant biomass that arose from warm, wet, and high CO2 conditions were possibly attenuated by biomass burning associated with compositional changes in the plant community. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 156
页数:8
相关论文
共 50 条
  • [1] Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum
    Tierney, Jessica E.
    Zhu, Jiang
    Li, Mingsong
    Ridgwell, Andy
    Hakim, Gregory J.
    Poulsen, Christopher J.
    Whiteford, Ross D. M.
    Rae, James W. B.
    Kump, Lee R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (42)
  • [2] Nannofossil imprints across the Paleocene-Eocene thermal maximum
    Slater, Sam M.
    Bown, Paul R.
    Jardine, Phillip E.
    [J]. GEOLOGY, 2024, 52 (04) : 271 - 275
  • [3] Eustatic change across the Paleocene-Eocene Thermal Maximum in the epicontinental Tarim seaway
    Jiang, Jingxin
    Hu, Xiumian
    Li, Juan
    Garzanti, Eduardo
    Jiang, Shijun
    Cui, Ying
    Wang, Yasu
    [J]. GLOBAL AND PLANETARY CHANGE, 2023, 229
  • [4] Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum
    Schneider, Leah J.
    Bralower, Timothy J.
    Kump, Lee R.
    Patzkowsky, Mark E.
    [J]. PALEOBIOLOGY, 2013, 39 (04) : 628 - 647
  • [5] Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum
    Gibbs, Samantha J.
    Bown, Paul R.
    Sessa, Jocelyn A.
    Bralower, Timothy J.
    Wilson, Paul A.
    [J]. SCIENCE, 2006, 314 (5806) : 1770 - 1773
  • [6] Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum
    Shaw, Jack O.
    D'haenens, Simon
    Thomas, Ellen
    Norris, Richard D.
    Lyman, Johnnie A.
    Bornemann, Andre
    Hull, Pincelli M.
    [J]. PALEOBIOLOGY, 2021, 47 (04) : 632 - 647
  • [7] Calcareous nannofossil biostratigraphy across the Paleocene-Eocene Thermal Maximum
    Menini, Alessandro
    Mattioli, Emanuela
    Vincon-Laugier, Arnauld
    Suan, Guillaume
    [J]. NEWSLETTERS ON STRATIGRAPHY, 2022, 55 (01) : 69 - 97
  • [8] Freshwater ecosystem collapse and mass mortalities at the Paleocene-Eocene thermal maximum
    Chen, Zuoling
    Ding, Zhongli
    Sun, Jimin
    Yang, Shiling
    Ni, Xijun
    Wang, Xu
    Wang, Yongli
    Zhang, Jiangyong
    He, Wei
    [J]. GLOBAL AND PLANETARY CHANGE, 2023, 227
  • [9] Deep-sea redox across the Paleocene-Eocene thermal maximum
    Paelike, Cecily
    Delaney, Margaret L.
    Zachos, James C.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (04) : 1038 - 1053
  • [10] On the duration of the Paleocene-Eocene thermal maximum (PETM)
    Roehl, Ursula
    Westerhold, Thomas
    Bralower, Timothy J.
    Zachos, James C.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2007, 8