Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum

被引:39
|
作者
Tierney, Jessica E. [1 ]
Zhu, Jiang [2 ]
Li, Mingsong [3 ]
Ridgwell, Andy [4 ]
Hakim, Gregory J. [5 ]
Poulsen, Christopher J. [6 ]
Whiteford, Ross D. M. [7 ]
Rae, James W. B. [7 ]
Kump, Lee R. [8 ]
机构
[1] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA
[2] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80305 USA
[3] Peking Univ, Sch Earth & Space Sci, Key Lab Orogen Belts & Crustal Evolut, Minist Educ, Beijing 100871, Peoples R China
[4] Univ Calif Riverside, Dept Earth & Planetary Sci, Riverside, CA 92521 USA
[5] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
[6] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA
[7] Univ St Andrews, Sch Earth & Environm Sci, St Andrews KY16 9AL, Fife, Scotland
[8] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
基金
欧洲研究理事会;
关键词
Paleocene-Eocene Thermal Maximum; greenhouse climates; climate sensitivity; hydrological cycle; data assimilation; SEAWATER CARBONATE CONCENTRATION; EARTH SYSTEM MODEL; DEEPMIP CONTRIBUTION; SURFACE-TEMPERATURE; LATEST PALEOCENE; FOSSIL CARBON; OPTIMUM EECO; PROXY DATA; SENSITIVITY; BOUNDARY;
D O I
10.1073/pnas.2205326119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ThePaleocene-Eocene ThermalMaximum (PETM; 56Ma) is one of our best geological analogs for understanding climate dynamics in a "greenhouse" world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed across Earth's surface, limiting our view of the spatial patterns of climate change. Here, we use paleoclimate data assimilation (DA) to combine climate model and proxy information and create a spatially complete reconstruction of the PETM and the climate state that precedes it ("PETM-DA"). Our data-constrained results support strong polar amplification, which in the absence of an extensive cryosphere, is related to temperature feedbacks and loss of seasonal snow on land. The response of the hydrological cycle to PETM warming consists of a narrowing of the Intertropical Convergence Zone, off-equatorial drying, and an intensification of seasonal monsoons and winter storm tracks. Many of these features are also seen in simulations of future climate change under increasing anthropogenic emissions. Since the PETM-DA yields a spatially complete estimate of surface air temperature, it yields a rigorous estimate of global mean temperature change (5.6 degrees C; 5.4 degrees C to 5.9 degrees C, 95% CI) that can be used to calculate equilibrium climate sensitivity (ECS). We find that PETM ECS was 6.5 degrees C (5.7 degrees C to 7.4 degrees C, 95% CI), which is much higher than the present-day range. This supports the view that climate sensitivity increases substantially when greenhouse gas concentrations are high.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum
    Denis, Elizabeth H.
    Pedentchouk, Nikolai
    Schouten, Stefan
    Pagani, Mark
    Freeman, Katherine H.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2017, 467 : 149 - 156
  • [2] Nannofossil imprints across the Paleocene-Eocene thermal maximum
    Slater, Sam M.
    Bown, Paul R.
    Jardine, Phillip E.
    [J]. GEOLOGY, 2024, 52 (04) : 271 - 275
  • [3] Eustatic change across the Paleocene-Eocene Thermal Maximum in the epicontinental Tarim seaway
    Jiang, Jingxin
    Hu, Xiumian
    Li, Juan
    Garzanti, Eduardo
    Jiang, Shijun
    Cui, Ying
    Wang, Yasu
    [J]. GLOBAL AND PLANETARY CHANGE, 2023, 229
  • [4] Evolution of the Earliest Horses Driven by Climate Change in the Paleocene-Eocene Thermal Maximum
    Secord, Ross
    Bloch, Jonathan I.
    Chester, Stephen G. B.
    Boyer, Doug M.
    Wood, Aaron R.
    Wing, Scott L.
    Kraus, Mary J.
    McInerney, Francesca A.
    Krigbaum, John
    [J]. SCIENCE, 2012, 335 (6071) : 959 - 962
  • [5] Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum
    Schneider, Leah J.
    Bralower, Timothy J.
    Kump, Lee R.
    Patzkowsky, Mark E.
    [J]. PALEOBIOLOGY, 2013, 39 (04) : 628 - 647
  • [6] Spatial change of precipitation in response to the Paleocene-Eocene thermal Maximum warming in China
    Chen, Zuoling
    Dong, Xinxin
    Wang, Xu
    Tang, Zihua
    Yang, Shiling
    Zhu, Min
    Ding, Zhongli
    [J]. GLOBAL AND PLANETARY CHANGE, 2020, 194
  • [7] Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum
    Gibbs, Samantha J.
    Bown, Paul R.
    Sessa, Jocelyn A.
    Bralower, Timothy J.
    Wilson, Paul A.
    [J]. SCIENCE, 2006, 314 (5806) : 1770 - 1773
  • [8] Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum
    Shaw, Jack O.
    D'haenens, Simon
    Thomas, Ellen
    Norris, Richard D.
    Lyman, Johnnie A.
    Bornemann, Andre
    Hull, Pincelli M.
    [J]. PALEOBIOLOGY, 2021, 47 (04) : 632 - 647
  • [9] Calcareous nannofossil biostratigraphy across the Paleocene-Eocene Thermal Maximum
    Menini, Alessandro
    Mattioli, Emanuela
    Vincon-Laugier, Arnauld
    Suan, Guillaume
    [J]. NEWSLETTERS ON STRATIGRAPHY, 2022, 55 (01) : 69 - 97
  • [10] Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum
    Dunkley Jones, Tom
    Lunt, Daniel J.
    Schmidt, Daniela N.
    Ridgwell, Andy
    Sluijs, Appy
    Valdes, Paul J.
    Maslin, Mark
    [J]. EARTH-SCIENCE REVIEWS, 2013, 125 : 123 - 145