Symmetries of Quantified Boolean Formulas

被引:3
|
作者
Kauers, Manuel [1 ]
Seidl, Martina [2 ]
机构
[1] JKU Linz, Inst Algebra, Linz, Austria
[2] JKU Linz, Inst Formal Models & Verificat, Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1007/978-3-319-94144-8_13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
While symmetries are well understood for Boolean formulas and successfully exploited in practical SAT solving, less is known about symmetries in quantified Boolean formulas (QBF). There are some works introducing adaptions of propositional symmetry breaking techniques, with a theory covering only very specific parts of QBF symmetries. We present a general framework that gives a concise characterization of symmetries of QBF. Our framework naturally incorporates the duality of universal and existential symmetries resulting in a general basis for QBF symmetry breaking.
引用
收藏
页码:199 / 216
页数:18
相关论文
共 50 条
  • [21] A Structural Approach to Reasoning with Quantified Boolean Formulas
    Pulina, Luca
    Tacchella, Armando
    [J]. 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 596 - 602
  • [22] Extracting Certificates from Quantified Boolean Formulas
    Benedetti, Marco
    [J]. 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 47 - 53
  • [23] QuBIS: An (In)complete Solver for Quantified Boolean Formulas
    Pulina, Luca
    Tacchella, Armando
    [J]. MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 34 - 43
  • [24] Moving Definition Variables in Quantified Boolean Formulas
    Reeves, Joseph E.
    Heule, Marijn J. H.
    Bryant, Randal E.
    [J]. TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, TACAS 2022, PT I, 2022, 13243 : 462 - 479
  • [25] Quantifier Shifting for Quantified Boolean Formulas Revisited
    Heisinger, Simone
    Heisinger, Maximilian
    Rebola-Pardo, Adrian
    Seidl, Martina
    [J]. AUTOMATED REASONING, IJCAR 2024, PT I, 2024, 14739 : 325 - 343
  • [26] A dichotomy theorem for learning quantified boolean formulas
    Dalmau, V
    [J]. MACHINE LEARNING, 1999, 35 (03) : 207 - 224
  • [27] A Model for Generating Random Quantified Boolean Formulas
    Chen, Hubie
    Interian, Yannet
    [J]. 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 66 - 71
  • [28] Propositional PSPACE reasoning with boolean programs versus quantified Boolean formulas
    Skelley, A
    [J]. AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 1163 - 1175
  • [29] A symbolic search based approach for quantified Boolean formulas
    Audemard, G
    Saïs, L
    [J]. THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, PROCEEDINGS, 2005, 3569 : 16 - 30
  • [30] Expressing default abduction problems as quantified Boolean formulas
    Tompits, H
    [J]. AI COMMUNICATIONS, 2003, 16 (02) : 89 - 105