Non-vanishing of Hilbert Poincare series

被引:0
|
作者
Kumari, Moni [1 ]
机构
[1] Natl Inst Sci Educ & Res, HBNI, Via Jatni, Khurja 752050, Odisha, India
关键词
Hilbert modular forms; Poincare series; Non-vanishing;
D O I
10.1016/j.jmaa.2018.06.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some non-vanishing results of Hilbert Poincare series. We derive these results, by showing that the Fourier coefficients of Hilbert Poincare series satisfy some nice orthogonality relations for sufficiently large weight as well as for sufficiently large level. To prove later results, we generalize a method of E. Kowalski et al. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1476 / 1485
页数:10
相关论文
共 50 条
  • [41] On the commutant of asymptotically non-vanishing contractions
    György Pál Gehér
    László Kérchy
    Periodica Mathematica Hungarica, 2011, 63 : 191 - 203
  • [42] A NON-VANISHING RESULT ON THE SINGULARITY CATEGORY
    Chen, Xiao-Wu
    Li, Zhi-Wei
    Zhang, Xiaojin
    Zhao, Zhibing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3765 - 3776
  • [43] Non-vanishing elements in finite groups
    Brough, Julian
    JOURNAL OF ALGEBRA, 2016, 460 : 387 - 391
  • [44] ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY
    Grobner, Harald
    Matringe, Nadir
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 93 - 106
  • [45] Non-vanishing elements of finite groups
    Dolfi, Silvio
    Navarro, Gabriel
    Pacifici, Emanuele
    Sanus, Lucia
    Tiep, Pham Huu
    JOURNAL OF ALGEBRA, 2010, 323 (02) : 540 - 545
  • [46] Finite groups and non-vanishing elements
    Feng Zhou
    Heguo Liu
    Fang Zhou
    Archiv der Mathematik, 2016, 107 : 121 - 125
  • [47] Non-vanishing of periods of automorphic functions
    Reznikov, A
    FORUM MATHEMATICUM, 2001, 13 (04) : 485 - 493
  • [48] On the commutant of asymptotically non-vanishing contractions
    Geher, Gyoergy Pal
    Kerchy, Laszlo
    PERIODICA MATHEMATICA HUNGARICA, 2011, 63 (02) : 191 - 203
  • [49] Non-vanishing Fourier coefficients of Δk
    Tian, Peng
    Qin, Hourong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 507 - 515
  • [50] Teleparallel gravity with non-vanishing curvature
    Wanas, M. I.
    Ammar, Samah A.
    Refaey, Shymaa A.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (12) : 1373 - 1383