Deep Reinforcement Learning-based ROS-Controlled RC Car for Autonomous Path Exploration in the Unknown Environment

被引:0
|
作者
Hossain, Sabir [1 ]
Doukhi, Oualid [1 ]
Jo, Yeonho [1 ]
Lee, Deok-Jin [1 ]
机构
[1] Kunsan Natl Univ, Sch Mech & Convergence Syst Engn, 558 Daehak Ro, Gunsan 54150, South Korea
基金
新加坡国家研究基金会;
关键词
Deep-Q Network; Laser Map; ROS; Gazebo Simulation; Path Exploration;
D O I
10.23919/iccas50221.2020.9268370
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, Deep reinforcement learning has become the front runner to solve problems in the field of robot navigation and avoidance. This paper presents a LiDAR-equipped RC car trained in the GAZEBO environment using the deep reinforcement learning method. This paper uses reshaped LiDAR data as the data input of the neural architecture of the training network. This paper also presents a unique way to convert the LiDAR data into a 2D grid map for the input of training neural architecture. It also presents the test result from the training network in different GAZEBO environment. It also shows the development of hardware and software systems of embedded RC car. The hardware system includes-Jetson AGX Xavier, teensyduino and Hokuyo LiDAR; the software system includes- ROS and Arduino C. Finally, this paper presents the test result in the real world using the model generated from training simulation.
引用
收藏
页码:1231 / 1236
页数:6
相关论文
共 50 条
  • [41] Networked and Deep Reinforcement Learning-Based Control for Autonomous Marine Vehicles: A Survey
    Wang, Yu-Long
    Wang, Cheng-Cheng
    Han, Qing-Long
    Wang, Xiaofan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, : 1 - 14
  • [42] An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning
    Guo, Siyu
    Zhang, Xiuguo
    Zheng, Yisong
    Du, Yiquan
    SENSORS, 2020, 20 (02)
  • [43] Reinforcement Learning-Based High-Speed Path Following Control for Autonomous Vehicles
    Liu, Jia
    Cui, Yunduan
    Duan, Jianghua
    Jiang, Zhengmin
    Pan, Zhongming
    Xu, Kun
    Li, Huiyun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 7603 - 7615
  • [44] Deep Reinforcement Learning-Based Control of Stewart Platform With Parametric Simulation in ROS and Gazebo
    Yadavari, Hadi
    Aghaei, Vahid Tavakol
    Ikizoglu, Serhat
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2023, 15 (03):
  • [45] Rescue path planning for urban flood: A deep reinforcement learning-based approach
    Li, Xiao-Yan
    Wang, Xia
    RISK ANALYSIS, 2024,
  • [46] Deep Learning-Based Nonparametric Identification and Path Planning for Autonomous Underwater Vehicles
    Mei, Bin
    Li, Chenyu
    Liu, Dongdong
    Zhang, Jie
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (09)
  • [47] Deep reinforcement learning-based controller for path following of an unmanned surface vehicle
    Woo, Joohyun
    Yu, Chanwoo
    Kim, Nakwan
    OCEAN ENGINEERING, 2019, 183 : 155 - 166
  • [48] Deep Reinforcement Learning-Based Robotic Puncturing Path Planning of Flexible Needle
    Lin, Jun
    Huang, Zhiqiang
    Zhu, Tengliang
    Leng, Jiewu
    Huang, Kai
    Processes, 12 (12):
  • [49] Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment
    Chai, Runqi
    Niu, Hanlin
    Carrasco, Joaquin
    Arvin, Farshad
    Yin, Hujun
    Lennox, Barry
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5778 - 5792
  • [50] Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement Learning
    Cai, Peide
    Wang, Hengli
    Huang, Huaiyang
    Liu, Yuxuan
    Liu, Ming
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 7262 - 7269