Correlation between the Kolmogorov-Sinai entropy and the self-diffusion coefficient in simple liquids

被引:8
|
作者
Pang, H
Shin, YH
Ihm, D
Lee, EK
Kum, O
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Mol Sci, Taejon 305701, South Korea
[3] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.6516
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Molecular dynamics simulations were performed for soft- and hard-sphere systems, for number densities ranging from 0.5 to 1.0, and the Kolmogorov-Sinai entropy (KS entropy) and self-diffusion coefficients were calculated It is found that the KS entropy, when expressed in terms of average collision frequency, is uniquely related to the self-diffusion coefficient by a simple scaring law. The dependence of the KS entropy on average collision frequency and number density was also explored. Numerical results show that the scaling laws proposed by Dzugutov, and by Beijeren, Dorfman, Poach, and Dellago, can be applied to both soft- and hard-sphere systems by changing to more generalized forms.
引用
收藏
页码:6516 / 6521
页数:6
相关论文
共 50 条
  • [41] SELF-DIFFUSION IN SIMPLE LIQUIDS
    LARSSON, KE
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (15) : 2835 - 2846
  • [42] Chaos in three-body dynamics:: Kolmogorov-Sinai entropy
    Heinämäki, P
    Lehto, HJ
    Valtonen, MJ
    Chernin, AD
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (03) : 811 - 822
  • [43] Detrended fluctuation analysis and Kolmogorov-Sinai entropy of electroencephalogram signals
    Lim, Jung Ho
    Khang, Eun Joo
    Lee, Tae Hyun
    Kim, In Hye
    Maeng, Seong Eun
    Lee, Jae Woo
    PHYSICS LETTERS A, 2013, 377 (38) : 2542 - 2545
  • [44] Kolmogorov-Sinai entropy for locally coupled piecewise linear maps
    Batista, AM
    Viana, RL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 308 (1-4) : 125 - 134
  • [45] KOLMOGOROV-SINAI TYPE LOGICAL ENTROPY FOR GENERALIZED SIMULTANEOUS MEASUREMENTS
    Shukla, Anurag
    Khare, Mona
    Pandey, Pratibha
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 21 - 40
  • [46] Kolmogorov-Sinai entropy of many-body Hamiltonian systems
    Lakshminarayan, Arul
    Tomsovic, Steven
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [47] Kolmogorov-Sinai entropy and dissipation in driven classical Hamiltonian systems
    Capela, Matheus
    Sanz, Mikel
    Solano, Enrique
    Celeri, Lucas C.
    PHYSICAL REVIEW E, 2018, 98 (05):
  • [48] SELF-DIFFUSION COEFFICIENT PREDICTION IN LIQUIDS
    LIELMEZS, J
    CHAN, TC
    THERMOCHIMICA ACTA, 1979, 34 (02) : 293 - 308
  • [49] SELF-DIFFUSION COEFFICIENT AND VISCOSITY IN LIQUIDS
    LI, JCM
    CHANG, P
    JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (03): : 518 - 520
  • [50] Ordinal Pattern Based Entropies and the Kolmogorov-Sinai Entropy: An Update
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2020, 22 (01) : 63