Inertial effects in the fractional translational diffusion of a Brownian particle in a double-well potential

被引:12
|
作者
Kalmykov, Yuri P.
Coffey, William T.
Titov, Sergey V.
机构
[1] Univ Perpignan, Lab Math & Phys Syst, F-66860 Perpignan, France
[2] Univ Dublin Trinity Coll, Dept Elect & Elect Engn, Dublin 2, Ireland
[3] Russian Acad Sci, Inst Radio Engn & Elect, Fryazino 141190, Moscow Region, Russia
关键词
D O I
10.1103/PhysRevE.75.031101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The anomalous translational diffusion including inertial effects of nonlinear Brownian oscillators in a double well potential V(x)=ax(2)/2+bx(4)/4 is considered. An exact solution of the fractional Klein-Kramers (Fokker-Planck) equation is obtained allowing one to calculate via matrix continued fractions the positional autocorrelation function and dynamic susceptibility describing the position response to a small external field. The result is a generalization of the solution for the normal Brownian motion in a double well potential to fractional dynamics (giving rise to anomalous diffusion).
引用
收藏
页数:8
相关论文
共 50 条