An Optimized Approach for Intra-Class Fruit Classification Using Deep Convolutional Neural Network

被引:1
|
作者
Singh, Rishipal [1 ]
Rani, Rajneesh [1 ]
Kamboj, Aman [1 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Comp Sci & Engn, Jalandhar 144011, Punjab, India
关键词
Intra-class; fruits and vegetables; deep learning; machine learning; computer vision; pre-trained models;
D O I
10.1142/S0219467821400143
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Fruits classification is one of the influential applications of computer vision. Traditional classification models are trained by considering various features such as color, shape, texture, etc. These features are common for different varieties of the same fruit. Therefore, a new set of features is required to classify the fruits belonging to the same class. In this paper, we have proposed an optimized method to classify intra-class fruits using deep convolutional layers. The proposed architecture is capable of solving the challenges of a commercial tray-based system in the supermarket. As the research in intra-class classification is still in its infancy, there are challenges that have not been tackled. So, the proposed method is specifically designed to overcome the challenges related to intra-class fruits classification. The proposed method showcases an impressive performance for intra-class classification, which is achieved using a few parameters than the existing methods. The proposed model consists of Inception block, Residual connections and various other layers in very precise order. To validate its performance, the proposed method is compared with state-of-the-art models and performs best in terms of accuracy, loss, parameters, and depth.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Classification of Metaphase Chromosomes Using Deep Convolutional Neural Network
    Hu, Xi
    Yi, Wenling
    Jiang, Ling
    Wu, Sijia
    Zhang, Yan
    Du, Jianqiang
    Ma, Tianyou
    Wang, Tong
    Wu, Xiaoming
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (05) : 473 - 484
  • [22] Facial Expression Classification Using Deep Convolutional Neural Network
    Choi, In-kyu
    Ahn, Ha-eun
    Yoo, Jisang
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (01) : 485 - 492
  • [23] Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 732 - 735
  • [24] Mammogram density classification using deep convolutional neural network
    Nithya, R.
    Santhi, B.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (01):
  • [25] Lithological facies classification using deep convolutional neural network
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 216 - 228
  • [26] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [27] The skin cancer classification using deep convolutional neural network
    Ulzii-Orshikh Dorj
    Keun-Kwang Lee
    Jae-Young Choi
    Malrey Lee
    Multimedia Tools and Applications, 2018, 77 : 9909 - 9924
  • [28] Dari Speech Classification Using Deep Convolutional Neural Network
    Dawodi, Mursal
    Baktash, Jawid Ahamd
    Wada, Tomohisa
    Alam, Najwa
    Joya, Mohammad Zarif
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 110 - 113
  • [29] Plant species classification using deep convolutional neural network
    Dyrmann, Mads
    Karstoft, Henrik
    Midtiby, Henrik Skov
    BIOSYSTEMS ENGINEERING, 2016, 151 : 72 - 80
  • [30] Paddy Disease Classification Study: A Deep Convolutional Neural Network Approach
    Krishna Gopal Mainak Deb
    Ranjan Dhal
    Jorge Mondal
    Optical Memory and Neural Networks, 2021, 30 : 338 - 357