Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models

被引:106
|
作者
Li, Huajin [1 ]
Xu, Qiang [1 ]
He, Yusen [2 ]
Deng, Jiahao [3 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, 1 Erxianqiao East Rd, Chengdu 610059, Sichuan, Peoples R China
[2] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[3] Depaul Univ, Coll Comp & Digital Media, Chicago, IL 60604 USA
基金
中国国家自然科学基金;
关键词
Landslide displacement prediction; Extreme learning machine; LASSO; Copula theory; Value-at-Risk; 3 GORGES RESERVOIR; REGRESSION; SELECTION; NETWORKS;
D O I
10.1007/s10346-018-1020-2
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Research on the dynamics of landslide displacement forms the basis for landslide hazard prevention. This paper proposes a novel data-driven approach to monitor and predict the landslide displacement. In the first part, autoregressive moving average time series models are constructed to analyze the autocorrelation of landslide triggering factors. A linear ensemble-based extreme learning machine using the least absolute shrinkage and selection operator is applied in predicting the displacement of landslides. Five benchmarking data-driven models, the support vector machine, neural network, random forest, k-nearest neighbor, and the classical extreme learning machine, are considered as baseline models for validating the ensemble-based extreme learning machines. Numerical experiments demonstrated that the proposed prediction model produces the smallest prediction errors among all the algorithms tested. In the second part, parametric copula models are fitted on the predicted displacement, to investigate the relationship between the triggering factors and landslide displacement values. The Gumbel-Hougaard copula model performs best, which indicates strong upper tail correlation between the triggering factors and displacement values. Thresholds for the triggering factors can be obtained by monitoring the landslide moving patterns with large displacement values. The effectiveness and utility of the proposed data-driven approach have been confirmed with the landslide case study in the region of the Three Gorges Reservoir.
引用
收藏
页码:2047 / 2059
页数:13
相关论文
共 50 条
  • [11] Ensemble-Based Risk Scoring with Extreme Learning Machine for Prediction of Adverse Cardiac Events
    Nan Liu
    Jeffrey Tadashi Sakamoto
    Jiuwen Cao
    Zhi Xiong Koh
    Andrew Fu Wah Ho
    Zhiping Lin
    Marcus Eng Hock Ong
    Cognitive Computation, 2017, 9 : 545 - 554
  • [12] Ensemble-based machine learning models for phase prediction in high entropy alloys
    Mishra, Aayesha
    Kompella, Lakshminarayana
    Sanagavarapu, Lalit Mohan
    Varam, Sreedevi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [13] Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level
    Cheng Lian
    Zhigang Zeng
    Wei Yao
    Huiming Tang
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1957 - 1972
  • [14] Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level
    Lian, Cheng
    Zeng, Zhigang
    Yao, Wei
    Tang, Huiming
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (08) : 1957 - 1972
  • [15] Ensemble-based extreme learning machine model for occupancy detection with ambient attributes
    Sachin Kumar
    Jagvinder Singh
    Ompal Singh
    International Journal of System Assurance Engineering and Management, 2020, 11 : 173 - 183
  • [16] Ensemble-based extreme learning machine model for occupancy detection with ambient attributes
    Kumar, Sachin
    Singh, Jagvinder
    Singh, Ompal
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2020, 11 (SUPPL 2) : 173 - 183
  • [17] Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory
    Faming Huang
    Kunlong Yin
    Guirong Zhang
    Lei Gui
    Beibei Yang
    Lei Liu
    Environmental Earth Sciences, 2016, 75
  • [18] Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory
    Huang, Faming
    Yin, Kunlong
    Zhang, Guirong
    Gui, Lei
    Yang, Beibei
    Liu, Lei
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (20)
  • [19] Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction
    Akinjole, Abisola
    Shobayo, Olamilekan
    Popoola, Jumoke
    Okoyeigbo, Obinna
    Ogunleye, Bayode
    MATHEMATICS, 2024, 12 (21)
  • [20] Dynamic ensemble-based machine learning models for predicting pest populations
    Singh, Ankit Kumar
    Yeasin, Md
    Paul, Ranjit Kumar
    Paul, A. K.
    Sarkar, Anita
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10