On a generalized fractional integro-differential equation of Volterra-type

被引:4
|
作者
Al-Shammery, AH [1 ]
Kalla, SL [1 ]
Khajah, HG [1 ]
机构
[1] Kuwait Univ, Dept Math & Comp Sci, Safat 13060, Kuwait
关键词
free electron laser (FEL) equation; special functions; fractional integrals; Tau method;
D O I
10.1080/10652460008819246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following fractional generalization of the free electron laser (FEL) equation is studied: D-tau(alpha)(tau) = lambda (tau)integral(0) t(delta)alpha(tau - t)e(ivt)dt + beta e(iv tau), 0 less than or equal to r less than or equal to 1, where beta, lambda epsilon C epsilon R, and delta > -1. An analytical treatment of this fractional integral equation leads to a closed form solution in terms of Kummer functions Phi (a, b; x). The solution is also expressed in terms of incomplete gamma functions gamma*(a,x). Finally, Tau method approximation is used in the numerical evaluation of the results. MSC (1991): 26A33, 33C15.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [31] Reconstructing a fractional integro-differential equation
    Boumenir, Amin
    Kim Tuan, Vu
    Al-Khulaifi, Waled
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 3159 - 3166
  • [32] On the uniform asymptotic stability for a linear integro-differential equation of Volterra type
    Funakubo, Minoru
    Hara, Tadayuki
    Sakata, Sadahisa
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 1036 - 1049
  • [33] Local and Global Existence of Mild Solution to Fractional Semilinear Impulsive Volterra Type Integro-Differential Equation
    Gou, Haide
    Li, Baolin
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (04) : 545 - 558
  • [34] Second Order Semilinear Volterra-Type Integro-Differential Equations with Non-Instantaneous Impulses
    Benchohra, Mouffak
    Rezoug, Noreddine
    Samet, Bessem
    Zhou, Yong
    [J]. MATHEMATICS, 2019, 7 (12)
  • [35] On the Solutions of a Nonlinear Fractional Integro-Differential Equation of Pantograph Type
    Y. Jalilian
    M. Ghasemi
    [J]. Mediterranean Journal of Mathematics, 2017, 14
  • [36] On the Solutions of a Nonlinear Fractional Integro-Differential Equation of Pantograph Type
    Jalilian, Y.
    Ghasemi, M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
  • [37] GENERALIZED SOLUTION OF THE DEGENERATING INTEGRO-DIFFERENTIAL EQUATION OF HYPERBOLIC TYPE
    MURADOV, RI
    HASANOV, MH
    [J]. IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1980, (06): : 37 - 43
  • [38] Analytic solutions of fractional integro-differential equations of Volterra type with variable coefficients
    Živorad Tomovski
    Roberto Garra
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 38 - 60
  • [39] Analytic solutions of fractional integro-differential equations of Volterra type with variable coefficients
    Tomovski, Zivorad
    Garra, Roberto
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 38 - 60
  • [40] Linear Volterra integro-differential equation and Schauder bases
    Berenguer, MI
    Fortes, MA
    Guillem, AIG
    Galán, MR
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) : 495 - 507