We give simple homological conditions for a rational homology 3-sphere Y to have infinite order in the rational homology cobordism group Theta(3)(Q), and for a collection of rational homology spheres to be linearly independent. These translate immediately to statements about knot concordance when Y is the branched double cover of a knot, recovering some results of Livingston and Naik. The statements depend only on the homology groups of the 3-manifolds, but are proven through an analysis of correction terms and their behavior under connected sums.
机构:
CUNY, Dept Math, Lehman Coll, 250 Bedford Pk Blvd, Bronx, NY 10468 USA
CUNY, Dept Math, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USACUNY, Dept Math, Lehman Coll, 250 Bedford Pk Blvd, Bronx, NY 10468 USA
Bettiol, Renato G.
Goodman, McFeely Jackson
论文数: 0引用数: 0
h-index: 0
机构:
Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USACUNY, Dept Math, Lehman Coll, 250 Bedford Pk Blvd, Bronx, NY 10468 USA
机构:
Univ Tokyo, Grad Sch Math Sci, Tokyo, JapanUniv Tokyo, Grad Sch Math Sci, Tokyo, Japan
Konno, Hokuto
Taniguchi, Masaki
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Grad Sch Sci, Dept Math, Sakyo Ku, Kyoto, Japan
Kyoto Univ, Grad Sch Sci, Dept Math, Kitashirakawa Oiwake Cho,Sakyo Ku, Kyoto 6068502, JapanUniv Tokyo, Grad Sch Math Sci, Tokyo, Japan