Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a sub-spherical sector

被引:0
|
作者
Chen, Hongbin [1 ]
Li, Rui [2 ]
Yao, Ruofei [3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen 518118, Peoples R China
[3] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[4] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
semilinear elliptic equations; symmetry; moving planes methods; monotonicity; LEAST-ENERGY SOLUTIONS; OVERDETERMINED PROBLEMS; MAXIMUM PRINCIPLE; UNBOUNDED-DOMAINS; MONOTONICITY; PEAKS;
D O I
10.1088/1361-6544/abf339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the qualitative properties of positive solutions to a semilinear elliptic equation in a planar sub-spherical sector. Under certain range of amplitudes, we prove some monotonicity properties via the method of moving planes. The symmetry properties follow from the uniqueness of the corresponding over-determined problem by Farina and Valdinoci (2013 Am. J. Math.).
引用
下载
收藏
页码:3858 / 3878
页数:21
相关论文
共 50 条