Estimation of effective connectivity via data-driven neural modeling

被引:31
|
作者
Freestone, Dean R. [1 ,2 ]
Karoly, Philippa J. [1 ,2 ]
Nesic, Dragan [2 ]
Aram, Parham [3 ]
Cook, Mark J. [1 ]
Grayden, David B. [2 ,4 ]
机构
[1] Univ Melbourne, St Vincents Hosp Melbourne, Dept Med, Fitzroy, Vic 3065, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, NeuroEngn Lab, Parkville, Vic 3052, Australia
[3] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[4] Univ Melbourne, Ctr Neural Engn, Parkville, Vic 3052, Australia
基金
澳大利亚研究理事会;
关键词
functional connectivity; neural mass model; model inversion; Kalman filter; epilepsy; seizures; parameter estimation; effective connectivity; FUNCTIONAL CONNECTIVITY; MASS MODEL; EEG; GENERATION; PREDICTION; RESPONSES; DYNAMICS; EPILEPSY; CORTEX;
D O I
10.3389/fnins.2014.00383
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] Data-Driven Covariance Estimation
    Rogers, John T., II
    Ball, John E.
    Gurbuz, Ali C.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS & TECHNOLOGY (PAST), 2022,
  • [22] Data-Driven Topology Estimation
    Weng, Yang
    Faloutsos, Christos
    Ilic, Marija D.
    2014 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2014, : 560 - 565
  • [23] Data-driven modeling for complex contacting phenomena via improved neural networks considering link switches
    Ma, Jia
    Wang, Jie
    Peng, Jing
    Yin, Lairong
    Dong, Shuai
    Tang, Jinsong
    MECHANISM AND MACHINE THEORY, 2024, 191
  • [24] Estimation Matrix Calibration of PMU Data-driven State Estimation Using Neural Network
    Tian, Guanyu
    Gu, Yingzhong
    Lu, Xiao
    Shi, Di
    Zhou, Qun
    Wang, Zhiwei
    Li, Jie
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [25] Cooperative data-driven modeling
    Dekhovich, Aleksandr
    Turan, O. Taylan
    Yi, Jiaxiang
    Bessa, Miguel A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [26] DATA-DRIVEN EVALUATION OF FUNCTIONAL CONNECTIVITY METRICS
    Zhang, Yingjie
    Han, Junwei
    Hu, Xintao
    Guo, Lei
    Liu, Tianming
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 532 - 535
  • [27] A Data-Driven Deep Neural Network for Modeling of Ionospheric Clutter in HFSWR
    Lyu, Zhe
    Yu, Changjun
    Wang, Rong
    Liu, Aijun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [28] Data-driven Distributed State Estimation and Behavior Modeling in Sensor Networks
    Yu, Rui
    Yuan, Zhenyuan
    Zhu, Minghui
    Zhou, Zihan
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8192 - 8199
  • [29] Multisource Data-Driven Modeling Method for Estimation of Intercity Trip Distribution
    Li, Yilin
    Wang, Haiquan
    Zhao, Jiejie
    Du, Bowen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [30] A Fuzzy Neural Network System Modeling Method Based on Data-driven
    Shao, Keyong
    Fan, Xin
    Han, Shengmei
    Li, Shaofeng
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 624 - +