Conditions for strong stabilizabilities of n-dimensional systems

被引:14
|
作者
Ying, JQ [1 ]
机构
[1] Gifu Univ, Fac Reg Studies, Div Reg Policy, Gifu 501, Japan
关键词
n-dimensional linear system; stabilization; strong stabilizability; winding number; sign condition; cylindrical algebraic decomposition;
D O I
10.1023/A:1008226120181
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents two computational criteria concerning the strong stabilizabilities of SISO (single-input single-output) n-D shift-invariant systems. The first one is an alternative necessary and sufficient condition for an n-D system to be stabilizable by a stable complex controller, which is an explicitly computable geometric equivalent to the topological one recently derived by Shiva Shankar. The second one is a necessary and sufficient condition for the stabilizability by a stable real controller, which can be viewed as a generalization of the well-known Youla's parity interlacing property for the 1-D case. Furthermore, related prolems for computational testing of the criteria are summarized and some basic ideas on potential solution methods based on the cylindrical algebraic decomposition of algebraic varieties are outlined.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [41] PROJECTIVE KINEMATICS OF CONJUGATED SYSTEMS OF N-DIMENSIONAL SPACES
    WALTER, R
    ARCHIV DER MATHEMATIK, 1968, 19 (03) : 313 - &
  • [42] Associative storage of information in n-dimensional dynamical systems
    Niño, F
    Hernandez, G
    Botelho, F
    WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 1, PROCEEDINGS: INFORMATION SYSTEMS, 1999, : 226 - 230
  • [43] Periodic Orbits of n-Dimensional Impulsive Switched Systems
    Shiyao Pan
    Ke Wu
    Guoshun Wang
    Gang Li
    Circuits, Systems, and Signal Processing, 2024, 43 : 1414 - 1428
  • [44] Stability and the Lyapunov equation for n-dimensional digital systems
    Xiao, CS
    Hill, DJ
    Agathoklis, P
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (07): : 614 - 621
  • [45] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    E. G. Kalnins
    J. M. Kress
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2007, 70 : 545 - 553
  • [46] The difference between n-dimensional regularization and n-dimensional reduction in QCD
    J. Smith
    W. L. van Neerven
    The European Physical Journal C - Particles and Fields, 2005, 40 : 199 - 203
  • [47] Modeling and Realization of n-Dimensional Linear Discrete Systems
    S. A. Miri
    J. D. Aplevich
    Multidimensional Systems and Signal Processing, 1998, 9 : 241 - 253
  • [48] n-dimensional polynomial hyperchaotic systems with synchronization application
    Wenhao Yan
    Qun Ding
    The European Physical Journal Plus, 138
  • [49] The Difference Splitting Scheme for n-Dimensional Hyperbolic Systems
    Aloev, R. D.
    Eshkuvatov, Z.
    Khudoyberganov, M. U.
    Nematova, D. E.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 1 - 10
  • [50] Entanglement evolution of bipartite m ⊗ n-dimensional systems
    Lastra, F.
    Romero, G.
    Lopez, C. E.
    Santos, M. Franca
    Retamal, J. C.
    QUANTUM OPTICS III, 2007, 84